Author(s): Reza Dony Hendrawan, Chiquita Prahasanti, Okkinardo Arief, I Komang Evan Wijaksana, Lambang Bargowo, Irma Josefina Savitri, Wibi Riawan

Email(s): chiquita-p-s@fkg.unair.ac.id

DOI: 10.52711/0974-360X.2024.00022   

Address: Reza Dony Hendrawan1, Chiquita Prahasanti2, Okkinardo Arief1, I Komang Evan Wijaksana2, Lambang Bargowo2, Irma Josefina Savitri2, Wibi Riawan3
1Postgraduate Student of Periodontology Specialist Programme, Faculty of Dental Medicine, Universitas Airlangga, Surabaya.
2Lecturer of Departement of Periodontology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya.
3Department of Clinical Pathology, Faculty of Medicine, Universitas Brawijaya, Malang.
*Corresponding Author

Published In:   Volume - 17,      Issue - 1,     Year - 2024


ABSTRACT:
Introduction: Alveolar bone defects need bone augmentation therapies by subtituting with bone material. Gourami (Osphronemus goramy) fish scale comprises type 1 collagen and it has been used as scaffolding material in bone tissue engineering. As alternative bone graft material, the scales have a big potency to promote osteogenesis in periodontal bone defect when autografts are not feasible. This study will analise Runx2 and Osteocalcin expression in wistar rat alveolar bone induced by type 1 collagen derived from gourami fish scale. Methods: 32 male Wistar rats were divided into four groups; control group—7 days (C7), treatment group—7 days (P7), control group—14 days (C14), and treatment group—14 days (P14). The left mandibular incisivus was extracted and the tooth socket was treated with 10mg collagen. The rats were euthanized (at day 7th and 14th) and immunohistochemistry was performed using monoclonal antibodies anti-RUNX2 and anti-osteocalcin. Results: After seven days and 14days, the expression of RUNX2 and osteocalcin in the treatment group increased significantly (p<0.05) compared with the control group. Conclusion: Type 1 collagen from gourami (Osphronemus goramy) fish scales increases RUNX2 and osteocalcin expression as a bone growth marker.


Cite this article:
Reza Dony Hendrawan, Chiquita Prahasanti, Okkinardo Arief, I Komang Evan Wijaksana, Lambang Bargowo, Irma Josefina Savitri, Wibi Riawan. Osphronemus goramy scales-derived type 1 Collagen induces RUNX2 and Osteocalcin expression: An in vivo Study. Research Journal of Pharmacy and Technology. 2024; 17(1):137-1. doi: 10.52711/0974-360X.2024.00022

Cite(Electronic):
Reza Dony Hendrawan, Chiquita Prahasanti, Okkinardo Arief, I Komang Evan Wijaksana, Lambang Bargowo, Irma Josefina Savitri, Wibi Riawan. Osphronemus goramy scales-derived type 1 Collagen induces RUNX2 and Osteocalcin expression: An in vivo Study. Research Journal of Pharmacy and Technology. 2024; 17(1):137-1. doi: 10.52711/0974-360X.2024.00022   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-1-22


REFERENCES:
1.    Urban IA, Monje A. Guided Bone Regeneration in Alveolar Bone Reconstruction. Oral and Maxillofacial Surgery Clinics of North America. 2019; 31(2): 331–338. doi:10.1016/j.coms.2019.01.003
2.    Shirai Y. Okuda K. Kubota T. Wolff LF. Yoshie H. The comparative effectiveness of granules or blocks of superporous hydroxyapatite for the treatment of intrabony periodontal defects. Open Journal of Stomatology. 2012; 2(2): 81–87. doi.org/10.4236/ojst.2012.22015
3.    Maiorana C, Poli PP, Deflorian M, Testori T, Mandelli F, Nagursky H, et al. Alveolar socket preservation with demineralised bovine bone mineral and a collagen matrix. J Periodontal Implant Sci. 2017; 47:194–210. doi.org/10.5051/jpis.2017.47.4.194
4.    Prahasanti C, Perdana S. The Roles of Insulin Growth Factors-1 (IGF-1) in Bone Graft to increase Osteogenesis. Research Journal of Pharmacy and Technology. 2022; 15(4): 1737-2. doi.org/10.52711/0974-360X.2022.00291
5.    Kumar B. Bhat A. Kumar K. Lakshmanan P. John A, Silvipriya K. Collagen: Animal Sources and Biomedical Application. J Appl Pharm Sci. 2015; 5:123–127. doi.org/10.7324/JAPS.2015.50322
6.    Ferreira AM. Gentile P. Chiono V. Ciardelli G. Collagen for bone tissue regeneration. Acta Biomater. 2012; 8: 3191–3200. doi.org/10.1016/j.actbio.2012.06.014
7.    Shalaby M. Agwa M. Saeed H. Khedr SM. Morsy O. & El-Demellawy MA. Fish Scale Collagen Preparation, Characterization and Its Application in Wound Healing. Journal of Polymers and the Environment. 2020; 28(1): 166–178. doi.org/10.1007/s10924-019-01594-w
8.    Yamada S, Yamamoto K, Ikeda T, Yanagiguchi K, Hayashi Y. Potency of fish collagen as a scaffold for regenerative medicine. Biomed Res Int. 2014; 1-8. doi.org/10.1155/2014/302932
9.    Pereira R dos S. Menezes JD. Bonardi JP. Griza GL. Okamoto R. Hochuli-Vieira E. Histomorphometric and immunohistochemical assessment of RUNX2 and VEGF of BiogranTM and autogenous bone graft in human maxillary sinus bone augmentation: A prospective and randomized study. Clin Implant Dent Relat Res. 2017; 19: 867–875. doi.org/10.1111/cid.12507
10.    Singh S, Kumar D, Lal AK. Serum osteocalcin as a diagnostic biomarker for primary osteoporosis in women. J Clin Diagnostic Res 2015; 9(8): RC04–RC07. doi.org/10.7860/JCDR/2015/14857.6318
11.    Blair HC, Larrouture QC, Li Y, Lin H, Beer-Stoltz D, Liu L, Tuan RS, Robinson LJ, Schlesinger PH, Nelson DJ. Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro. Tissue Eng Part B Rev. 2017; 23(3): 268-280. doi.org/10.1089/ten.TEB.2016.0454
12.    Tangguh HL. Prahasanti C. Ulfah N, Krismariono A. Characterization of pepsin-soluble collagen extracted from gourami (Osphronemus goramy) scales. Niger J Clin Pract. 2021; 24: 89-92. doi.org/10.4103/njcp.njcp_516_19
13.    Schmidt MM. Dornelles RCP. Mello RO. Kubota EH. Mazutti MA. Kempka AP. et al. Collagen extraction process. Int Food Res J. 2016; 23: 913–922.
14.    Sotelo CG. Comesaña MB. Ariza PR. Ricardo I. Characterization of Collagen from Different Discarded Fish Species of the West Coast of the Iberian Peninsula Characterization of Collagen from Different Discarded Fish Species. J Aquat Food Prod Technol. 2015: 0–12. doi.org/10.1080/10498850.2013.865283
15.    Bruderer M. Richards RG. Alini M. Stoddart MJ. Role and regulation of runx2 in osteogenesis. Eur Cells Mater. 2014; 28: 269–286. doi.org/10.22203/ecm.v028a19
16.    Liu TM, Eng Hin Lee. Transcriptional Regulatory Cascades in Runx2-Dependent. Tissue Eng Part B Revn. 2013; 19: 254–263. doi.org/10.1089/ten.TEB.2012.0527
17.    Zoch ML. Clemens TL. Riddle RC. New insights into the biology of osteocalcin. Bone. 2016; 82: 42–49 doi.org/10.1016/j.bone.2015.05.046
18.    Vimalraj S. Arumugam B. Miranda PJ. Selvamurugan N. Runx2: Structure, function, and phosphorylation in osteoblast differentiation. Int J Biol Macromol. 2015; 78: 202–208. doi.org/10.1016/j.ijbiomac.2015.04.008
19.    Ahmed R. Getachew AT. Cho YJ. Chun BS. Application of bacterial collagenolytic proteases for the extraction of type I collagen from the skin of bigeye tuna (Thunnus obesus). LWT. 2018; 89: 44–51. doi.org/10.1016/j.lwt.2017.10.024
20.    Langenbach F. Handschel J. Effects of dexamethasone , ascorbic acid and β -glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther. 2013; 4(117): 1-7. doi.org/10.1186/scrt328
21.    Zhang D. Wu X. Chen J. Lin K. Bioactive Materials The development of collagen based composite scaffolds for bone regeneration. Bioact Mater. 2018; 3: 129–138. doi.org/10.1016/j.bioactmat.2017.08.004

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available