Author(s): Suganya M, Usha Raja Nanthini, Smruti Sudha Nayak, Vino S, Sajitha Lulu S


DOI: 10.52711/0974-360X.2023.00665   

Address: Suganya M1, Usha Raja Nanthini1, Smruti Sudha Nayak2, Vino S2, Sajitha Lulu S3*
1Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, Tamilnadu, India – 624101.
2Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India – 632014.
3Department of Biotechnology School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India – 632014.
*Corresponding Author

Published In:   Volume - 16,      Issue - 9,     Year - 2023

Cardiovascular diseases are considered a major causative factor for the increasing rate of global mortality rate. Rendering to an approximation of the World Health Organization (WHO), 17.9 million people worldwide were affected by cardiovascular diseases. The behavioral risk factors such as tobacco use, unhealthy diet, obesity, physical inactivity, and harmful use of alcohol were found to play a significant role in the onset of cardiovascular diseases. Hypertension, diabetes, and hyperlipidemia are considered clinical factors associated with the prevalence of cardiovascular diseases. Among these clinical factors hyperlipidemia, which is characterized by increased levels of serum cholesterol, is highly related to the pathophysiological mechanism associated with cardiovascular diseases. Several medications are available for lowering abnormal serum cholesterol levels. Lovastatin, which belongs to the class of statins aids in lowering cholesterol levels by inhibiting hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, a significant enzyme required for cholesterol biosynthesis. Lovastatin is also involved in regulating the pathogenesis of type 2 diabetes. In this study, we explored the association between Lovastatin interacting genes in Hypercholesterolemia pathways with genes associated with Type 2 Diabetes mellitus by employing systems biology approach. Our studies identified the significance of key genes such as BIRC2, LDLR, APOB, CASP3, CASP6, CASP9, XIAP, and APAF1 in the regulation of hypercholesterolemia and type 2 diabetes.

Cite this article:
Suganya M, Usha Raja Nanthini, Smruti Sudha Nayak, Vino S, Sajitha Lulu S. Lovastatin regulates hypercholesterolemia and type II diabetes via BIRC2, LDLR, APOB, CASP3, CASP6, CASP9, XIAP and APAF1 genes: A System Pharmacology approach. Research Journal of Pharmacy and Technology 2023; 16(9):4058-4. doi: 10.52711/0974-360X.2023.00665

Suganya M, Usha Raja Nanthini, Smruti Sudha Nayak, Vino S, Sajitha Lulu S. Lovastatin regulates hypercholesterolemia and type II diabetes via BIRC2, LDLR, APOB, CASP3, CASP6, CASP9, XIAP and APAF1 genes: A System Pharmacology approach. Research Journal of Pharmacy and Technology 2023; 16(9):4058-4. doi: 10.52711/0974-360X.2023.00665   Available on:

1.    Schaiff RAB, Moe RM, Krichbaum DW. An Overview of Cholesterol Management. Am Heal Drug Benefits.  2008; 1:39. /pmc/articles/PMC4106545/
2.    Gofman JW, Lindgren F, Elliott H, Mantz W, Hewitt J, Strisower B, Herring V, Lyon TP. The role of lipids and lipoproteins in atherosclerosis. Science. 1950; 111: doi: 10.1126/SCIENCE.111.2877.166
3.    Ranjitha R, Elango K, Devi DR, Sahul HNU. Formulation and Evaluation of Lovastatin Loaded Nanosponges for the treatment of Hyperlipidemia. Res J Pharm Technol. (2021; 14:5653–5660. doi: 10.52711/0974-360X.2021.00983
4.    Gupta DK, Sharma SK, Gaur PK, Singh AP. Lovastatin Loaded Solid lipid nanoparticles for Transdermal delivery: In vitro Characterization. Res J Pharm Technol. 2022; 15:1085–1089. doi: 10.52711/0974-360X.2022.00181
5.    Nurhabibah, Nugroho AK, Martien R, Lukitaningsih E. Solubility Studies and Validation of Lovastatin using High Performance Liquid Chromatography Method. Res J Pharm Technol. 2021; 14: 6285–6288. doi: 10.52711/0974-360X.2021.01087
6.    The Fungi - 3rd Edition.
7.    Adedinsewo D, Taka N, Agasthi P, Sachdeva R, Rust G, Onwuanyi A. Prevalence and Factors Associated With Statin Use Among a Nationally Representative Sample of US Adults: National Health and Nutrition Examination Survey  2011–2012. Clin Cardiol. 2016; 39:491. doi: 10.1002/CLC.22577
8.    Sahoo AC, Kanungo SK, Dinda SC, Dash S, Pani S. Formulation development of immediate release solid dispersion tablets of lovastatin with enhanced dissolution. Res J Pharm Technol. 2019; 12: 4963–4972. doi: 10.5958/0974-360X.2019.00861.8
9.    Zolkiflee NF, Affandi MMM, Majeed ABA. Solvodynamic study on Solubility Enhanced Lovastatin in presence of Arginine as Cosolute. Undefined.  2021; 14:3631–3638. doi: 10.52711/0974-360X.2021.00628
10.    Ward NC, Watts GF, Eckel RH. Statin Toxicity. Circ Res. 2019; 124:328–350. doi: 10.1161/CIRCRESAHA.118.312782
11.    Bitzur R, Cohen H, Kamari Y, Harats D. Intolerance to Statins: Mechanisms and Management. Diabetes Care. 2013; 36:S325. doi: 10.2337/DCS13-2038
12.    Wilkinson MJ, Laffin LJ, Davidson MH. Overcoming toxicity and side-effects of lipid-lowering therapies. Best Pract Res Clin Endocrinol Metab. 2014; 28: 439–452. doi: 10.1016/J.BEEM.2014.01.006
13.    (PDF) LC-ESI-MS/MS method for Quantitation of Lovastatin Liver Homogenate: Application to Pharmacokinetic Study.
14.    Lovastatin loaded Chitosan Nanoparticles: Preparation, Evaluation and In vitro release studies | Request PDF.
15.    Won H. Characteristics of networks in nursing units. Res J Pharm Technol. 2017; 10:3081–3084. doi: 10.5958/0974-360X.2017.00546.7
16.    Jitendra Kumar P, Indira Muzib Y, Misra G. Formulation and Evaluation of Pulsatile Drug Delivery of Lovastatin. Undefined.  2018;  11: 2797–2803. doi: 10.5958/0974-360X.2018.00516.4
17.    Ganda OP. Statin-induced diabetes: incidence, mechanisms, and implications. F1000 Research. 2016; 5: doi: 10.12688/F1000RESEARCH.8629.1
18.    Aiman U, Najmi A, Khan RA. Statin induced diabetes and its clinical implications. J Pharmacol Pharmacother. 2014; 5:181. doi: 10.4103/0976-500X.136097
19.    Dissolution enhancement of dronedarone hydrochloride by complexation with β-CD and HP β-CD: Dissolution and physicochemical characterization | Request PDF.
20.    Kuhn M, von Mering C, Campillos M, Jensen LJ, Bork P. STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res. 2008; 36: D684. doi: 10.1093/NAR/GKM795
21.    Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK. BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res. 2007;  35:D198. doi: 10.1093/NAR/GKL999
22.    Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019; 47:D607. doi: 10.1093/NAR/GKY1131
23.    Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000; 28:27. doi: 10.1093/NAR/28.1.27
24.    Devaraj S, Semaan JR, Jialal I. Biochemistry, Apolipoprotein B. StatPearls. 2021.
25.    Ma S, Sun W, Gao L, Liu S. Therapeutic targets of hypercholesterolemia: HMGCR and LDLR. Diabetes, Metab Syndr Obes Targets Ther. 2019; 12: 1543. doi: 10.2147/DMSO.S219013
26.    de Chaves EP, Narayanaswami V. Apolipoprotein E and cholesterol in aging and disease in the brain. Future Lipidol . 2008;  3:505. doi: 10.2217/17460875.3.5.505
27.    Bouteille N, Driouch K, Hage PE, Sin S, Formstecher E, Camonis J, Lidereau R, Lallemand F. Inhibition of the Wnt/beta-catenin pathway by the WWOX tumor suppressor protein. Oncogene.  2009;  28:2569–2580. doi: 10.1038/ONC.2009.120
28.    Quazi F, Molday RS. Differential Phospholipid Substrates and Directional Transport by ATP-binding Cassette Proteins ABCA1, ABCA7, and ABCA4 and Disease-causing Mutants. J Biol Chem. 2013;  288:34414. doi: 10.1074/JBC.M113.508812
29.    Åkerlöf E, Slotted H, Pousette Å, Jörnvall H. Identification of apolipoprotein A1 and immunoglobulin as components of a serum complex that mediates activation of human sperm motility. Biochemistry (1991) 30:8986–8990. doi: 10.1021/BI00101A011
30.    Marcel YL, Vezina C, Milne RW. Cholesteryl ester and apolipoprotein E transfer between human high density lipoproteins and chylomicrons. Biochim Biophys Acta - Lipids Lipid Metab. 1983; 750:411–417. doi: 10.1016/0005-2760(83)90047-4
31.    Baumkötter F, Schmidt N, Vargas C, Schilling S, Weber R, Wagner K, Fiedler S, Klug W, Radzimanowski J, Nickolaus S, et al. Amyloid Precursor Protein Dimerization and Synaptogenic Function Depend on Copper Binding to the Growth Factor-Like Domain. J Neurosci. 2014; 34:11159. doi: 10.1523/JNEUROSCI.0180-14.2014
32.    Hirota Y, Yamashita S ichi, Kurihara Y, Jin X, Aihara M, Saigusa T, Kang D, Kanki T. Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways. Autophagy. 2015; 11:332. doi: 10.1080/15548627.2015.1023047
33.    Citron BA, Arnold PM, Sebastian C, Qin F, Malladi S, Ameenuddin S, Landis ME, Festoff BW. Rapid Upregulation of Caspase-3 in Rat Spinal Cord after Injury: mRNA, Protein, and Cellular Localization Correlates with Apoptotic Cell Death. Exp Neurol.  2000;  166:213–226. doi: 10.1006/EXNR.2000.7523
34.    Li P, Zhou L, Zhao T, Liu X, Zhang P, Liu Y, Zheng X, Li Q. Caspase-9: structure, mechanisms and clinical application. Oncotarget. 2017; 8:23996. doi: 10.18632/ONCOTARGET.15098
35.    Zimmermann G, Papke B, Ismail S, Vartak N, Chandra A, Hoffmann M, Hahn SA, Triola G, Wittinghofer A, Bastiaens PIH, et al. Small molecule inhibition of the KRAS–PDEδ interaction impairs oncogenic KRAS signalling. Nat. 2013; 497:638–642. doi: 10.1038/nature12205
36.    Yin C, Zhu B, Zhang T, Liu T, Chen S, Liu Y, Li X, Miao X, Li S, Mi X, et al. Pharmacological Targeting of STK19 Inhibits Oncogenic NRAS-Driven Melanomagenesis. Cell. 2019;  176: 1113-1127. e16. doi: 10.1016/J.CELL.2019.01.002/ATTACHMENT/964B16F3-B80D-4BF2-8F3D-D4F3EF6F2FE6/MMC2.XLSX
37.    Sharpe LJ, Brown AJ. Controlling Cholesterol Synthesis beyond 3-Hydroxy-3-methylglutaryl-CoA Reductase (HMGCR). J Biol Chem. 2013;  288: 18707. doi: 10.1074/JBC.R113.479808
38.    Bonne G, Di Barletta MR, Varnous S, Bécane HM, Hammouda EH, Merlini L, Muntoni F, Greenberg CR, Gary F, Urtizberea JA, et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet. 1999; 213 (21) :285–288. doi: 10.1038/6799
39.    Mishra SK, Keyel PA, Edeling MA, Dupin AL, Owen DJ, Traub LM. Functional Dissection of an AP-2 β2 Appendage-binding Sequence within the Autosomal Recessive Hypercholesterolemia Protein. J Biol Chem. 2005;  280:19270–19280. doi: 10.1074/JBC.M501029200
40.    Chen J, Fujii K, Zhang L, Roberts T, Fu H. Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK–ERK independent mechanism. Proc Natl Acad Sci USA. 2001; 98:7783. doi: 10.1073/PNAS.141224398
41.    Yang S, Wu Y, Xu TH, de Waal PW, He Y, Pu M, Chen Y, DeBruine ZJ, Zhang B, Zaidi SA, et al. Crystal structure of the Frizzled 4 receptor in a ligand-free state. Nat. 2018;  560:666–670. doi: 10.1038/s41586-018-0447-x
42.    Schoft VK, Beauvais AJ, Lang C, Gajewski A, Prüfert K, Winkler C, Akimenko MA, Paulin-Levasseur M, Krohne G. The lamina-associated polypeptide 2 (LAP2) isoforms β, γ andω of zebrafish: developmental expression and behavior during the cell cycle. J Cell Sci. 2003;  116:2505–2517. doi: 10.1242/JCS.00450
43.    Xu L, Zhu J, Hu X, Zhu H, Kim HT, LaBaer J, Goldberg A, Yuan J. c-IAP1 cooperates with Myc by acting as a ubiquitin ligase for Mad1. Mol Cell. 2007; 28: 914–922. doi: 10.1016/J.MOLCEL.2007.10.027
44.    Yamamoto T, Davis CG, Brown MS, Schneider WJ, Casey ML, Goldstein JL, Russell DW. The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell. 1984;  39: 27–38. doi: 10.1016/0092-8674(84)90188-0
45.    Feingold KR, Grunfeld C. Introduction to Lipids and Lipoproteins. Endotext. 2021;
46.    Chaudhary AK, Yadav N, Bhat TA, O’Malley J, Kumar S, Chandra D. A potential role of X-linked inhibitor of apoptosis protein in mitochondrial membrane permeabilization and its implication in cancer therapy. Drug Discov Today. 2016;  21:38. doi: 10.1016/J.DRUDIS.2015.07.014
47.    Jian L, Yang G. Identification of Key Genes Involved in Diabetic Peripheral Neuropathy Progression and Associated with Pancreatic Cancer. Diabetes, Metab Syndr Obes Targets Ther.  2020; 13:463. doi: 10.2147/DMSO.S235011
48.    Oeckinghaus A, Ghosh S. The NF-κB Family of Transcription Factors and Its Regulation. Cold Spring Harb Perspect Biol. 2009;  1: doi: 10.1101/CSHPERSPECT.A000034
49.    Paththinige CS, Sirisena ND, Dissanayake VHW. Genetic determinants of inherited susceptibility to hypercholesterolemia – a comprehensive literature review. Lipids Heal Dis. 2017; 161 (16) :1–22. doi: 10.1186/S12944-017-0488-4
50.    Boucher J, Kleinridders A, Ronald Kahn C. Insulin Receptor Signaling in Normal and Insulin-Resistant States. Cold Spring Harb Perspect Biol. 2014;  6: doi: 10.1101/CSHPERSPECT.A009191
51.    Kitamura T. The role of FOXO1 in β-cell failure and type 2 diabetes mellitus. Nat Rev Endocrinol. 2013; 910 (9):615–623. doi: 10.1038/nrendo.2013.157

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available