Author(s): Lidia Kamal Al-Halaseh, Rawan Al-Suhaimat, Duaa Al-Suhaimat, Teeb Al-Adaileh, Maha Nour Abu Hajleh, Ali Mahmoud Al-Samydai, Rehan Alkasasbeh, Manal Nahar Al Soub, Wael Abu Dayyih

Email(s): drhalaseh@mutah.edu.jo

DOI: 10.52711/0974-360X.2023.00728   

Address: Lidia Kamal Al-Halaseh1*, Rawan Al-Suhaimat1, Duaa Al-Suhaimat2, Teeb Al-Adaileh2, Maha Nour Abu Hajleh3, Ali Mahmoud Al-Samydai4, Rehan Alkasasbeh2, Manal Nahar Al Soub1, Wael Abu Dayyih1
1Department of Pharmaceutical Chemistry, Faulty of Pharmacy, Mutah University, Zip code (61710), Al-Karak, Jordan.
2Department of Pharmaceutical Science, Faulty of Pharmacy, Mutah University, Zip code (61710), Al-Karak, Jordan.
3Department of Cosmetic Science, Pharmacological and Dagnostic Research Centre, Faculty of Allied Medical Science, Al-Ahliyya Amman University, Zip code (19328), Amman, Jordan.
4Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Zip code (19328), Amman, Jordan.
*Corresponding Author

Published In:   Volume - 16,      Issue - 9,     Year - 2023


ABSTRACT:
Nanotechnology innovations have a positive impact on multidisciplinary health sectors, in particular, drug delivery. Variable nanocarriers were utilized in order to decrease systemic toxicity and enhance the delivery of drug particles to the targeted tissues. Systemic delivery of medicines through the pulmonary route of administration is still within limited boundaries. Delivering medicines loaded into nanoparticles through the pulmonary route for treating chronic and acute diseases such as diabetes, cancers, and even hormone therapy would be a novelty. Nanocarriers include lipid nanoparticles, liposomes, nano-emulsions, solid lipid nanoparticles, non-structured lipid carriers, and Multifarious inhaled Lipid-Based Nanocarriers. Promising results were obtained after delivering cytotoxic, hypoglycemic and anabolic agents. Although revolution in drug delivery and enhancements of drug efficacy are predicted, limitations and health hazards have to be taken into consideration. Physical stability, high loading capacity, good adhesion to the pulmonary wall are among the formulation supremacy. Also from a patient perspective, inhaled drugs carried by nanoparticles have minor side effects, faster response, more convenience to carry, and wide dosage intervals. Disadvantages range from expelling the minute particles which could result in delivering sub-effective doses to more serious health problems such as increased thrombosis activity.


Cite this article:
Lidia Kamal Al-Halaseh, Rawan Al-Suhaimat, Duaa Al-Suhaimat, Teeb Al-Adaileh, Maha Nour Abu Hajleh, Ali Mahmoud Al-Samydai, Rehan Alkasasbeh, Manal Nahar Al Soub, Wael Abu Dayyih. Revolutionized Drug Delivery by using Pulmonary Nanotechnology: A Review. Research Journal of Pharmacy and Technology 2023; 16(9):4462-8. doi: 10.52711/0974-360X.2023.00728

Cite(Electronic):
Lidia Kamal Al-Halaseh, Rawan Al-Suhaimat, Duaa Al-Suhaimat, Teeb Al-Adaileh, Maha Nour Abu Hajleh, Ali Mahmoud Al-Samydai, Rehan Alkasasbeh, Manal Nahar Al Soub, Wael Abu Dayyih. Revolutionized Drug Delivery by using Pulmonary Nanotechnology: A Review. Research Journal of Pharmacy and Technology 2023; 16(9):4462-8. doi: 10.52711/0974-360X.2023.00728   Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-9-72


REFERENCES:
1.    Reibold M, Paufler P, Levin AA, Kochmann W, Pätzke N, Meyer DC. Carbon nanotubes in an ancient Damascus sabre. Nature. 2006; 444(7117): 286.doi: 10.1038/444286a.
2.    Sujan MN, Patil AB, Gowda DV. A Review on Methods of Preparation and Characterization of the solid Lipid Nanoparticles. Research Journal of Pharmacy and Technology. 2020; 28;13(7):3433-41.
3.    Dhekale KD, Kamble RN. Development of cefdinir loaded Functionalized carbon Nanotubes dry powder Inhaler for the Treatment of cystic Fibrosis. Research Journal of Pharmacy and Technology. 2021; 14(7): 3839-45.doi: 10.52711/0974-360X.2021.00666
4.    Saudagar RB, Kanchan TM. A review on gold nanoparticles. Asian Journal of Pharmaceutical Research. 2016; 6(1): 45-8.doi: 10.5958/2231-5691.2016.00008.3
5.    Wretlind A. Development of fat emulsions. JPEN. Journal of parenteral and enteral nutrition. 1981; 5(3):230-5.doi: 10.1177/0148607181005003230.
6.    Permatasari DA, Nuryastuti T. N-(chlorobenzyl) formamide as an antituberculosis agent from multicomponent reaction synthesis. Research Journal of Pharmacy and Technology. 2021; 14(6):3253-61.doi: 10.52711/0974-360X.2021.00566
7.    Cryer AM, Thorley AJ. Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacology and Therapeutics. 2019; 198:189-205. doi: 10.1016/j.pharmthera.2019.02.010.
8.    Çağdaş M, Sezer AD, Bucak S. Liposomes as potential drug carrier systems for drug delivery. Application of nanotechnology in drug delivery. 2014:1-00. doi: 10.5772/58459
9.    Paranjpe M, Müller-Goymann CC. Nanoparticle-mediated pulmonary drug delivery: a review. International journal of molecular sciences. 2014;15(4): 5852-73. doi: 10.3390/ijms15045852.
10.    Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale Research Letters. 2013; 8(1):102. doi: 10.1186/1556-276X-8-102
11.    Choudhury H, Gorain B, Chatterjee B, K Mandal U, Sengupta P, K Tekade R. Pharmacokinetic and pharmacodynamic features of nanoemulsion following oral, intravenous, topical and nasal route. Current Pharmaceutical Design. 2017; 23(17): 2504-31. doi: 10.2174/1381612822666161201143600
12.    Maphosa Y, Jideani VA. Factors affecting the stability of emulsions stabilized by biopolymers. Science and Technology Behind Nanoemulsions. 2018: 65.doi: 10.5772/intechopen.75308
13.    Sajid M, Cameotra SS, Khan MS, Ahmad I. Nanoparticle-based delivery of phytomedicines: challenges and opportunities. InNew Look to Phytomedicine. 2019; 597-623. doi: 10.1016/B978-0-12-814619-4.00024-0
14.    Borges A, de Freitas V, Mateus N, Fernandes I, Oliveira J. Solid lipid nanoparticles as carriers of natural phenolic compounds. Antioxidants. 2020; 9(10):998. doi: 10.3390/antiox9100998
15.    Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Advanced Drug Delivery Reviews. 2012;64:83-10. doi: 10.1016/s0169-409x(01)00105-3.
16.    Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. International journal of Pharmaceutics. 2002; 242(1-2): 121-8.doi: 10.1016/s0378-5173(02)00180-1.
17.    Samein LH. Preparation and evaluation of nystatin-loaded solid-lipid-nanoparticles for topical delivery. Asian Journal of Pharmaceutical Research. 2014;4(1):44-51.
18.    Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. International Journal of Pharmaceutics. 2009 Jan 21;366(1-2):170-84.doi: 10.1016/j.ijpharm.2008.10.003.
19.    Abu Hajleh MN, Abu‐Huwaij R, AL‐Samydai A, Al‐Halaseh LK, Al‐Dujaili EA. The revolution of cosmeceuticals delivery by using nanotechnology: A narrative review of advantages and side effects. Journal of Cosmetic Dermatology. 2021; 20(12): 3818-28.doi: 10.1111/jocd.14441
20.    Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Advanced drug delivery reviews. 2002;54 Suppl 1:S131-55. doi: 10.1016/s0169-409x(02)00118-7.
21.    Magalhães J, Pinheiro M, Drasler B, Septiadi D, Petri-Fink A, Santos SG, Rothen-Rutishauser B, Reis S. Lipid nanoparticles biocompatibility and cellular uptake in a 3D human lung model. Nanomedicine. 2020;15(3):259-71.doi: 10.2217/nnm-2019-0256
22.    Garbuzenko OB, Kbah N, Kuzmov A, Pogrebnyak N, Pozharov V, Minko T. Inhalation treatment of cystic fibrosis with lumacaftor and ivacaftor co-delivered by nanostructured lipid carriers. Journal of Controlled Release. 2019;296:225-31.doi: 10.1016/j.jconrel.2019.01.025.
23.    Liu J, Cheng H, Le Han ZQ, Zhang X, Gao W, Zhao K, Song Y. Synergistic combination therapy of lung cancer using paclitaxel-and triptolide-coloaded lipid–polymer hybrid nanoparticles. Drug Design, Development and Therapy. 2018;12: 3199-3209.doi: 10.2147/DDDT.S172199
24.    Yugui F, Wang H, Sun D, Zhang X. Nasopharyngeal cancer combination chemoradiation therapy based on folic acid modified, gefitinib and yttrium 90 co-loaded, core-shell structured lipid-polymer hybrid nanoparticles. Biomedicine and Pharmacotherapy. 2019;114:108820.doi: 10.1016/j.biopha.2019.108820
25.    Sung JC, Pulliam BL, Edwards DA. Nanoparticles for drug delivery to the lungs. Trends in biotechnology. 2007; 25(12):563-70.doi: 10.1016/j.tibtech.2007.09.005.
26.    Kumar SS, Melchias G, Ravikumar P, Chandrasekar R, Kumaravel P. Bioinspired synthesis of silver nanoparticles using Euphorbia hirta leaf extracts and their antibacterial activity. Asian Journal of Pharmaceutical Research. 2014; 4(1):39-43.
27.    Siekmeier R, Scheuch G. Inhaled insulin–does it become reality. J PhysiolPharmacol. 2008;59(Suppl 6):81-113
28.    Bi R, Shao W, Wang Q, Zhang N. Solid lipid nanoparticles as insulin inhalation carriers for enhanced pulmonary delivery. Journal of Biomedical Nanotechnology. 2009; 5(1):84-92.doi: 10.1166/jbn.2009.036
29.    Hamishehkar H, Emami J, Najafabadi AR, Gilani K, Minaiyan M, Mahdavi H, Nokhodchi A. Effect of carrier morphology and surface characteristics on the development of respirable PLGA microcapsules for sustained-release pulmonary delivery of insulin. International Journal of Pharmaceutics. 2010;389(1-2):74-85.doi: 10.1016/j.ijpharm.2010.01.021
30.    Henkin RI. Inhaled insulin—intrapulmonary, intranasal, and other routes of administration: mechanisms of action. Nutrition. 2010;26(1):33-9.doi: 10.1016/j.nut.2009.08.001
31.    Yang Y, Bajaj N, Xu P, Ohn K, Tsifansky MD, Yeo Y. Development of highly porous large PLGA microparticles for pulmonary drug delivery. Biomaterials. 2009;30(10):1947-53.doi: 10.1016/j.biomaterials.2008.12.044.
32.    Wu L, da Rocha SR. Biocompatible and biodegradable copolymer stabilizers for hydrofluoroalkane dispersions: a colloidal probe microscopy investigation. Langmuir. 2007;23(24):12104-10.doi: 10.1021/la702108x
33.    Liu J, Gong T, Fu H, Wang C, Wang X, Chen Q, Zhang Q, He Q, Zhang Z. Solid lipid nanoparticles for pulmonary delivery of insulin. International Journal of Pharmaceutics. 2008;356(1-2): 333-44.doi: 10.1016/j.ijpharm.2008.01.008
34.    Liu J, Gong T, Wang C, Zhong Z, Zhang Z. Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization. International Journal of Pharmaceutics. 2007; 340(1-2): 153-62.doi: 10.1016/j.ijpharm.2007.03.009
35.    Fang X, Wang J, Zhou H, Jiang X, Zhang G, Zhang D. Multiple response optimization of spray-drying process for the preparation of salvianolic acids microparticles and evaluation for potential application in dry powder inhalation. Drying Technology. 2011;29(5):573-83.doi.org/10.1080/07373937.2010.514691
36.    Thwala LN, Préat V, Csaba NS. Emerging delivery platforms for mucosal administration of biopharmaceuticals: a critical update on nasal, pulmonary and oral routes. Expert Opinion On Drug Delivery. 2017;14(1): 23-36. doi: 10.1080/17425247.2016.1206074.
37.    Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. International Journal of Food Microbiology. 2010;144(1):51-63. doi:10.1016/j.ijfoodmicro.2010.09.012.
38.    Goy RC, Britto DD, Assis OB. A review of the antimicrobial activity of chitosan. Polímeros. 2009; 19: 241-7. doi:10.1590/s0104-14282009000300013.
39.    Florea BI, Thanou M, Junginger HE, Borchard G. Enhancement of bronchial octreotide absorption by chitosan and N-trimethyl chitosan shows linear in vitro/in vivo correlation. Journal of Controlled Release. 2006;110(2): 353-61. doi: 10.1016/j.jconrel.2005.10.001
40.    Nar RR, Kumar A, Jeeva S. Assessment and comparison of knowledge and attitude regarding pulmonary tuberculosis and compliance to Anti-Tuberculosis Treatment (ATT) of pulmonary tuberculosis patients under intensive and continuation phase of treatment at selected DOTS centers of Ambala, Haryana. Age (in years). 2012 ;18(30):31-50.
41.    Purohit MC, Kandwal A, Purohit R, Semwal AR, Parveen S, Khajuria AK. Antimicrobial Activity of Synthesized Zinc Oxide Nanoparticles using Ajugabracteosa Leaf Extract. Asian Journal of Pharmaceutical Analysis. 2021 ;11(4):275-80.
42.    Cheng TY, Cramb SM, Baade PD, Youlden DR, Nwogu C, Reid ME. The international epidemiology of lung cancer: latest trends, disparities, and tumor characteristics. Journal of Thoracic Oncology. 2016 ;11(10):1653-71.doi: 10.1016/j.jtho.2016.05.021.
43.    Wu L, Leng D, Cun D, Foged C, Yang M. Advances in combination therapy of lung cancer: Rationales, delivery technologies and dosage regimens. Journal of Controlled Release. 2017;260:78-91.doi: 10.1016/j.jconrel.2017.05.023
44.    Lemjabbar-Alaoui H, Hassan OU, Yang YW, Buchanan P. Lung cancer: Biology and treatment options. Biochimicaet Biophysica Acta (BBA)-Reviews on Cancer. 2015;1856(2):189-210.doi: 10.1016/j.bbcan.2015.08.002.
45.    Lee WH, Loo CY, Ghadiri M, Leong CR, Young PM, Traini D. The potential to treat lung cancer via inhalation of repurposed drugs. Advanced Drug Delivery Reviews. 2018;133:107-30.doi.org/10.1016/j.addr.2018.08.012
46.    Muthukumaran D. An Experimental Study to assess the effectiveness of Incentive Spirometry exercise on Pulmonary parameters of patients with Lower Respiratory Tract disorders in SVMCH and RC, Puducherry. Asian Journal of Nursing Education and Research. 2020; 10(1):5-8. doi:10.5958/2349-2996.2020.00002.6
47.    Rosiere R, Hureaux J, Levet V, Amighi K, Wauthoz N. Inhaled chemotherapy-Part 1: General concept and current technological challenges. Revue Des Maladies Respiratoires. 2018;35(4):357-77.doi: 10.1016/j.rmr.2018.02.00
48.    AbdElwakil MM, Mabrouk MT, Helmy MW, Abdelfattah EZ, Khiste SK, Elkhodairy KA, Elzoghby AO. Inhalable lactoferrin–chondroitin nanocomposites for combined delivery of doxorubicin and ellagic acid to lung carcinoma. Nanomedicine. 2018;13(16):2015-35.https://doi.org/10.2217/nnm-2018-0039
49.    Gadoue SM, Toomeh D. Radio-sensitization efficacy of gold nanoparticles in inhalational nanomedicine and the adverse effect of nano-detachment due to coating inactivation. Physica Medica. 2019;60:7-13.doi:10.1016/j.ejmp.2019.02.013.
50.    Hamzawy MA, Abo-Youssef AM, Salem HF, Mohammed SA. Antitumor activity of intratracheal inhalation of temozolomide (TMZ) loaded into gold nanoparticles and/or liposomes against urethane-induced lung cancer in BALB/c mice. Drug delivery. 2017; 24(1):599-607. doi:10.1080/10717544.2016.1247924.
51.    Kabary DM, Helmy MW, Abdelfattah EZ, Fang JY, Elkhodairy KA, Elzoghby AO. Inhalable multi-compartmental phospholipid enveloped lipid core nanocomposites for localized mTOR inhibitor/herbal combined therapy of lung carcinoma. European Journal of Pharmaceutics and Biopharmaceutics. 2018; 130:152-64. doi:10.1016/j.ejpb.2018.06.027.
52.    Chernikov IV, Vlassov VV, Chernolovskaya EL. Current development of siRNA bioconjugates: From research to the clinic. Frontiers in Pharmacology. 2019; 10:444.doi: 10.3389/fphar.2019.00444.
53.    Shinde S, Saroagi GK, Mishra DK. Nanocarriers for Effective si-RNA delivery. Research Journal of Pharmacy and Technology. 2018; 11(9):4166-72. doi: 10.5958/0974-360X.2018.00765.5.
54.    Anastasilakis AD, Polyzos SA, Makras P. Therapy of endocrine disease: denosumab vs bisphosphonates for the treatment of postmenopausal osteoporosis. European Journal of Endocrinology. 2018 ;179(1):R31-45.doi: 10.1530/EJE-18-0056.
55.    Yamamoto A, Iseki T, Ochi-Sugiyama M, Okada N, Fujita T, Muranishi S. Absorption of water-soluble compounds with different molecular weights and [Asu1. 7]-eel calcitonin from various mucosal administration sites. Journal of Controlled Release. 2001;76(3):363-74.doi.org/10.1016/S0168-3659(01)00454-0
56.    Moreno-Sastre M, Pastor M, Esquisabel A, Sans E, Viñas M, Fleischer A, Palomino E, Bachiller D, Pedraz JL. Pulmonary delivery of tobramycin-loaded nanostructured lipid carriers for Pseudomonas aeruginosa infections associated with cystic fibrosis. International Journal of Pharmaceutics. 2016; 498(1-2): 263-73.doi: 10.1016/j.ijpharm.2015.12.028
57.    Cruz L, Fattal E, Tasso L, Freitas GC, Carregaro AB, Guterres SS, Pohlmann AR, Tsapis N. Formulation and in vivo evaluation of sodium alendronate spray-dried microparticles intended for lung delivery. Journal of Controlled Release. 2011;152(3): 370-5.doi: 10.1016/j.jconrel.2011.02.030.
58.    Bruinenberg P, Blanchard JD, Cipolla DC, Dayton F, Mudumba S, Gonda I. Inhaled liposomal ciprofloxacin: once a day management of respiratory infections. In Respiratory Drug Delivery. 2010; 1: 73-82. Davis Healthcare International Publishing River Grove, Orlando, Florida.
59.    Cipolla D, Redelmeier T, Eastman S, Bruinenberg P, Gonda I. Liposomes, niosomes and proniosomes–a critical update of their (commercial) development as inhaled products. Respiratory Drug Delivery Europe. 2011:41-54.
60.    WissingSA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral drug delivery. Advanced Drug Delivery Reviews. 2004; 56(9):1257-72.doi: 10.1016/j.addr.2003.12.002.
61.    Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. International Journal of Pharmaceutics. 2010;392(1-2):1-9.doi: 10.1016/j.ijpharm.2010.03.017.
62.    Patlolla RR, Chougule M, Patel AR, Jackson T, Tata PN, Singh M. Formulation, characterization and pulmonary deposition of nebulized celecoxib encapsulated nanostructured lipid carriers. Journal of Controlled Release. 2010;144(2):233-41.doi: 10.1016/j.jconrel.2010.02.006
63.    Jacobs C, Müller RH. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharmaceutical Research. 2002; 19(2): 189-94. doi: 10.1023/a:1014276917363.
64.    Prashar D, Sharma D. Cubosomes: a sustained drug delivery carrier. Asian Journal of Research in Pharmaceutical Science. 2011; 1(3): 59-62.
65.    Inoue KI, Takano H. Aggravating impact of nanoparticles on immune-mediated pulmonary inflammation. The Scientific World Journal. 2011;11:382-90.doi: 10.1100/tsw.2011.44.
66.    Suh WH, Suslick KS, Stucky GD, Suh YH. Nanotechnology, nanotoxicology, and neuroscience. Progress in Neurobiology. 2009; 87(3):133-70. doi: 10.1016/j.pneurobio. 2008.09.009
67.    Powers KW, Palazuelos M, Moudgil BM, Roberts SM. Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology. 2007; 1(1):42-51.doi.org/10.1080/17435390701314902
68.    Berube KA, Balharry D, Sexton KJ, Koshy L, Jones TP. Combustion-derived nanoparticles: mechanisms of pulmonary toxicity. Clinical and Experimental Pharmacology and Physiology. 2007; 34(10): 1044-50. doi: 10.1111/j.1440-1681.2007.04733.x
69.    Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS.. Safe handling of nanotechnology. Nature. 2006; 444(7117):267-9. doi: 10.1038/444267a
70.    Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M. Toxicity of nanomaterials. Chemical Society Reviews. 2012; 41(6):2323-43.doi: 10.1039/c1cs15188f
71.    Sajid M, Ilyas M, Basheer C, Tariq M, Daud M, Baig N, Shehzad F. Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environmental Science and Pollution Research. 2015; 22(6):4122-43.doi: 10.1007/s11356-014-3994-1.
72.    Shimada A, Kawamura N, Okajima M, Kaewamatawong T, Inoue H, Morita T. Translocation pathway of the intratracheally instilled ultrafine particles from the lung into the blood circulation in the mouse. Toxicologic Pathology. 2006; 34(7): 949-57.doi: 10.1080/01926230601080502.
73.    Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. science. 2006; 311(5761): 622-7. doi: 10.1126/science.1114397.
74.    Suwa T, Hogg JC, Quinlan KB, Ohgami A, Vincent R, van Eeden SF. Particulate air pollution induces progression of atherosclerosis. Journal of the American College of Cardiology. 2002;39(6):935-42.doi: 10.1016/s0735-1097(02)01715-1
75.    Kalaiselvi S, Manimaran V, Damodharan N. Nanoparticle as a powerful tool to penetrate the Blood-brain barrier in the treatment of Neurodegenerativedisease: Focus on recent advances. Research Journal of Pharmacy and Technology. 2020; 13(5): 2135-43.doi: 10.5958/0974-360X.2020.00384.4
76.    Hodson L, Methner M, Zumwalde RD. Approaches to safe nanotechnology; managing the health and safety concerns associated with Engineered Nanomaterials. doi: 10.1007/s11125-005-4273-1.
77.    Todo H, Okamoto H, Iida K, Danjo K. Effect of additives on insulin absorption from intratracheally administered dry powders in rats. International Journal of Pharmaceutics. 2001; 220(1-2): 101-10.doi: 10.1016/s0378-5173(01)00662-7.
78.    Hussain A, Arnold JJ, Khan MA, Ahsan F. Absorption enhancers in pulmonary protein delivery. Journal of Controlled Release. 2004; 94(1):15-24.doi: 10.1016/j.jconrel.2003.10.001.
79.    Surendrakumar K, Martyn GP, Hodgers EC, Jansen M, Blair JA. Sustained release of insulin from sodium hyaluronate based dry powder formulations after pulmonary delivery to beagle dogs. Journal of Controlled Release. 2003; 91(3): 385-94.doi: 10.1016/s0168-3659(03)00263-3.
80.    Abu Hajleh MN, AL-Samydai A, Al-Dujaili EAS. Nano, micro particulate and cosmetic delivery systems of polylactic acid: A mini review. Journal of Cosmetic Dermatology. 2020; 19(11): 2805–11.doi.org/10.1111/jocd.1369.
81.    Al-Halaseh LK, Al-Jawabri NA, Tarawneh SK, Al-Qdah WK, Abu-Hajleh MN, Al-Samydai AM, Ahmed MA. A review of the cosmetic use and potentially therapeutic importance of hyaluronic acid. Journal of Applied Pharmaceutical Science. 2022 5; 12(7): 034-41.doi: 10.7324/JAPS.2022.120703.
82.    Yamada K, Odomi M, Okada N, Fujita T, Yamamoto A. Chitosan oligomers as potential and safe absorption enhancers for improving the pulmonary absorption of interferon-α in rats. Journal of Pharmaceutical Sciences. 2005; 94(11): 2432-40. doi: 10.1002/jps.20454
83.    Sharma GN, Kumar CP, Shrivastava B, Kumar B. Advances in oral chitosan based nano delivery system for colon targeted drug delivery in inflammatory bowel disease. Research Journal of Pharmacy and Technology. 2021; 14(7): 3769-74. doi: 10.52711/0974-360X.2021.00652
84.    Ouidad A, Sara C, Samir D. Biological properties and Acute Toxicity Study of Copper oxide nanoparticles prepared by aqueous leaves extract of Portulaca oleracea (L). Asian Journal of Pharmaceutical Research. 2020; 10(2):89-94.doi:10.5958/2231-5691.2020.0017.9

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available