Author(s): Mohini Salunke, Balaji Wakure, Pravin Wakte

Email(s): mohinisalunke82@gmail.com

DOI: 10.52711/0974-360X.2023.00727   

Address: Mohini Salunke1*, Balaji Wakure2, Pravin Wakte1,
1University Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad - 431004, Maharashtra, India.
2Vilasrao Deshmukh Foundation, Group of Institutions, VDF School of Pharmacy, Latur - 413 531, Maharashtra, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 9,     Year - 2023


ABSTRACT:
The hyphenated method was created by combining a separation method with an online spectroscopy detection method. The separated mixture components from the chromatographic method will next pass through the interphase and into the spectroscopic method. The purpose of the coupling is to provide a detection that is more information-rich than that produced by a single analytical procedure for both identification and quantification. Over the past two decades, hyphenated analytical techniques have seen tremendous advancements that have greatly expanded their applicability in the study of elemental species, biomaterials, explosives, trace elements, natural products, etc. while demonstrating specificity and sensitivity. The characterization of seaweed bioactive compounds using hyphenated techniques such as GCMS, CE-MS, LC-MS, LC-FTIR, and LC-NMR is covered in detail in this article.


Cite this article:
Mohini Salunke, Balaji Wakure, Pravin Wakte. Hyphenated Techniques for The Characterization of Seaweed Bioactive Compounds. Research Journal of Pharmacy and Technology 2023; 16(9):4455-1. doi: 10.52711/0974-360X.2023.00727

Cite(Electronic):
Mohini Salunke, Balaji Wakure, Pravin Wakte. Hyphenated Techniques for The Characterization of Seaweed Bioactive Compounds. Research Journal of Pharmacy and Technology 2023; 16(9):4455-1. doi: 10.52711/0974-360X.2023.00727   Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-9-71


REFERENCES:
1.    Duarte K. RochaST. Freitas AC. Duarte AC et al Analytical techniques for discovery bioactive compounds from marine fungi. TrAC Trends in Analytical Chemistry. 2012; 34: 97-110.https://doi.org/10.1016/j.trac.2011.10.014
2.    Umavandhana. Jayanthi S. Phytochemical Screening and Free Radical Scavenging Activity on Some Selected Seaweeds from Gulf of Mannar, India. Research J Pharm and Tech. 2018;11(8):3385–3388. 10.5958/0974-360X.2018.00623.6
3.    Zhang G. Li J. Zhu T. Gu Q. Li D et al Advanced tools in marine natural drug discovery. CurrOpinBiotechnol. 2016;42:13–23. http://dx.doi.org/10.1016/j.copbio.2016.02.021
4.    Sasidharan S. Chen Y. Saravanan D.Sundram KM.Latha LY et alExtraction, Isolation and Characterization of Bioactive Compounds from Plants’ Extracts. Afr J Tradit Complement Altern Med. 2011;8(1):1-10.
5.    Uribe E. Delgadillo A.Giovagnoli C.Quispe I.Zura L et al Extraction techniques for bioactive compounds and antioxidant capacity determination of chilean papaya (Vasconcelleapubescens) fruit. J Chem. 2015;http://dx.doi.org/10.1155/2015/347532
6.    Patel K. Patel J. Patel M. Rajput G. Patel H et al Introduction to hyphenated techniques and their applications in pharmacy. Pharm Methods. 2010;1(1):2. 10.4103/2229-4708.72222
7.    Brusotti G.Cesari I.Dentamaro A.Caccialanza G.Massolini G et al Isolation and characterization of bioactive compounds from plant resources: The role of analysis in the ethnopharmacological approach. J Pharm Biomed Anal. 2014; 87:218–228. http://dx.doi.org/10.1016/j.jpba.2013.03.007
8.    Nagajyothi S. Swetha Y.Neeharika J. Suresh P. Ramarao N et al Hyphenated Techniques-A Comprehensive Review. International Journal of Advance Research and Development. 2017; 63-71.
9.    Banerjee S. Bonde CG. Merukar SS. Patil YR et alAdvanced Hyphenated Techniques in Analytical Chemistry. Asian J Research Chem. 2009;2(4):380–387.
10.    Rageeb Md.Badgujar SR. Shaikh TYet al Hyphenated Techniques of Drug Analysis. Scholars Academic Journal of Pharmacy (SAJP). 2017;6(6):263–272. 10.21276/sajp
11.    Kalyankar T. Jadhav AC. Mhetre SMet al Recent Advances in Coupling Technology in Analysis of Natural Product. Research J Pharm and Tech. 2012;5(9):1145–1153.
12.    Sarker SD. Nahar L. Hyphenated techniques and their applications in natural products analysis. Methods in Molecular Biology. 2012;864:301–340. 10.1007/978-1-61779-624-1_12
13.    Pandian RS. Noora AT. GC-MS Analysis of Phytochemical Compounds Present in the Leaves of Citrus medica. L. Research J Pharm and Tech. 2018;12(4):1823–1826. 10.5958/0974-360X.2019.00304.4
14.    Mohammed KAA. Wasfy AAF.Bazalou MSet alQualitative Analysis of Ethanolic extract of Ginger (Zingiber officinale Rosc) by Gas Chromatography Triple Quad Time-Flight (GC-Q-TOF) Technology. Research J Pharm and Tech. 2020;14(8):4307–4313. 10.52711/0974-360X.2021.00748
15.    Balachandar R.Karmegam N.Subbaiya Ret al Extraction, separation, and characterization of bioactive compounds produced by Streptomyces isolated from vermicast soil. Research J Pharm and Tech. 2018;11(10):4569–4574. 10.5958/0974-360X.2018.00836.3
16.    Thakur P. Thakur U. Kaushal P et al. A Review on GC-MS Hyphenated Technique. Asian Journal of Pharmaceutical Analysis. 2021;11(4):285–292.
17.    Abha D.Avinash K. Ganesh S.Javed A et al Impurity Profiling with Use of Hyphenated Techniques. Asian J Research Chem. 2012;5(7):875–881.
18.    Misra NN. Rai DK. Hossain M et al Analytical techniques for bioactives from seaweed. In: Seaweed Sustainability: Food and Non-Food Applications. Elsevier Inc., 2015; p. 271–287.http://dx.doi.org/10.1016/B978-0-12-418697-2.00010-6
19.    Maghraby YR. Farag MA. Kontominas M. Shakour ZT. Ramadan AR et alNanoencapsulated Extract of a Red Seaweed (Rhodophyta) Species as a Promising Source of Natural Antioxidants. ACS Omega. 2022;7(8):6539–6548. doi.org/10.1021/acsomega.1c05517
20.    Chethankumara GP. Krishna V. Nagaraj K et al HR-LCMS and In vitro cytotoxicity analysis of Alseodaphnesemecarpifolia stem bark and leaf methanol extracts. Research J Pharm.andTech. 2022;15(1):250–256. 10.52711/0974-360X.2022.00041
21.    Kumar A. Vyas J. Mishra SB et al. A Brief Review on Liquid Chromatography-Mass Spectrometry/LCMS and its Application. Asian J Pharm Ana. 2022;12(3):203–210. 10.52711/2231-5675.2022.00034
22.    Ramu G. Meher AK. Anandan P. Pampalia SG. Mukhopadhyay A et al A new LCMS/MS method for estimation of Bupropion and its metabolite in human plasma. Asian J Research Chem. 2012;5(3):340–344.
23.    Anitha KG. Arputha G. Muthubala G. Susithra R. Mullaivendhan M. Anandham R et al GC-MS Analysis of Bioactive Compounds of Seaweed Extracts Collected from Seashore of Manalmelkudi (Pudukkottai dst., Tamilnadu), responsible for Antifungal Activity. Int J CurrMicrobiolAppl Sci. 2019;8(09):2042–2051.10.20546/ijcmas.2019.809.236
24.    Zhong B. Robinson NA. Warner RD. Barrow CJ. Dunshea FR. Suleria H et al LC-ESI-QTOF-MS/MS characterization of seaweed phenolics and their antioxidant potential. Mar Drugs. 2020;18(6) 331;10.3390/md18060331
25.    Ahilya V. Waghmode PM. Gas chromatography-high resolution mass spectrometry analysis of Sargassum species. Indian Hydrobiolog. 2021;20(1):35–44. Available from: www.krishalgology.yolasite.com
26.    Mofeed J. Deyab M. Sabry N. Ward F et al In Vitro Anticancer Activity of Five Marine Seaweeds Extract from Egypt Against Human Breast and Colon Cancer Cell Lines. Res Sq. 2021;1–15. https://doi.org/10.21203/rs.3.rs-462221/v1
27.    Albratty M. Alhazmi HA. Meraya AM et al. Spectral analysis and Antibacterial activity of the bioactive principles of Sargassum tenerrimum J Agardh collected from the Red sea, Jazan, Kingdom of Saudi Arabia. Brazilian Journal of Biology. 2023;83. doi.org/10.1590/1519-6984.249536
28.    Kumar P. Senthamilselvi S. Govindaraju M et al GC–MS profiling and antibacterial activity of Sargassum tenerrimum. J Pharm Res. 2013;6(1):88–92. dx.doi.org/10.1016/j.jopr.2012.11.019
29.    Deepak P. Josebin MP. Kasthuridevi R et al. GC-MS Metabolite Profiling, Antibacterial, Antidiabetic and Antioxidant Activities of Brown Seaweeds, Sargassum wightii Greville Ex J. Agardh, 1848 and Stoechospermum marginatum (C. Agardh) Kützing 1843. Pharmacology, Toxicology and Biomedical Reports. 2017;3(2):27–34. 10.5530/PTB.2017.3.5
30.    Balachandran P. Parthasarathy V. Ajay Kumar TV et al Isolation of Compounds from Sargassum wightii by GCMS and the Molecular Docking against Anti-Inflammatory Marker COX2. International Letters of Chemistry, Physics and Astronomy. 2016;63:1–12. 10.18052/www.scipress.com/ILCPA.63.1
31.    Ragunath C. Kumar YAS. Kanivalan I. Radhakrishnan S et al Phytochemical screening and gc-ms analysis of bioactive constituents in the methanolic extract of caulerpa racemosa (Forssk.) j. agardh and padinaboergeseniiallender& kraft. CurrAppl Sci Technol. 2020;20(3):380–393.10.14456/cast.2020.24
32.    Abdelrheem DA. Rahman AA. Elsayed KNM. El-Mageed HR. Mohamed HS. Ahmed SA et al Isolation, characterization, in vitro anticancer activity, dft calculations, molecular docking, bioactivity score, drug-likeness and admet studies of eight phytoconstituents from brown alga sargassum platycarpum. J Mol Struct. 2021;1225,129245. doi.org/10.1016/j.molstruc.2020.129245
33.    Olate GC. Barriga A. Vergara C et al Identification of Polyphenols from Chilean Brown Seaweeds Extracts by LC-DAD-ESI-MS/MS. Journal of Aquatic Food Product Technology. 2019;28(4):375–391. doi.org/10.1080/10498850.2019.1594483
34.    Sami FJ. Soekamto NH. Firdaus. Latip J et al Liquid chromatography-mass spectrometry characterization of bioactive compounds from sargassum polycystum with the larval and in vitro anticancer activity. Rasayan Journal of Chemistry. 2021;14(2):676–683. dx.doi.org/10.31788/ RJC.2021.1425976
35.    Chia YY. Kanthimathi MS. Khoo KS. Rajarajeswaran J. Cheng HM. Yap WS et al Antioxidant and cytotoxic activities of three species of tropical seaweeds. BMC Complement Altern Med. 2015;15(1) 339. 10.1186/s12906-015-0867-1
36.    Montone CM. Aita SE. Catani M et al. Profiling and quantitative analysis of underivatized fatty acids in Chlorella vulgaris microalgae by liquid chromatography-high resolution mass spectrometry. J Sep Sci. 2021;44(16):3041–3051. 10.1002/jssc.202100306
37.    Pantami HA. Bustamam MS. Lee SY et al. Comprehensive GCMS and LC-MS/MS metabolite profiling of chlorella vulgaris. Mar Drugs. 2020;18(7). doi:10.3390/md18070367
38.    Kalasariya HS. Patel N. Phycochemical Characterization of Marine macroalgae, Sargassum tenerrimum Collected from Beyt Dwarka, Western Coast of Gujarat, India. Oriental Journal of Chemistry. 2022;38(2):361–374. doi.org/10.13005/ojc/380218
39.    Kalasariya HS. Patel NB. Yadav A et al. Characterization of fatty acids, polysaccharides, amino acids, and minerals in marine macroalga chaetomorphacrassa and evaluation of their potentials in skin cosmetics. Molecules. 2021;26(24). doi.org/10.3390/molecules26247515
40.    Haresh SK. Leonel P. Nikunj B et al Patel Biologically active components for cosmeceutical use extracted from Chaetomorphaaerea. Traditional Medicine Research. 2022;7(4):35. doi.org/10.53388/TMR20220326002
41.    Bidleman TF. Andersson A. Brugel S et al. Bromoanisoles and methoxylated bromodiphenyl ethers in macroalgae from Nordic coastal regions. Environ Sci Process Impacts. 2019;21(5):881–892. 10.1039/c9em00042a
42.    Melanson JE. Mackinnon SL. Characterization of phlorotannins from brown algae by LC-HRMS. Methods in Molecular Biology. 2015; 1308:253–266.
43.    Dias DA. White JM. Urban S et al Laurencia filiformis: Phytochemical Profiling by Conventional and HPLC-NMR Approaches. Natural Product Communications. 4 (2) 157 - 172 2009
44.    Gorka B. Wieczorek PP. Simultaneous determination of nine phytohormones in seaweed and algae extracts by HPLC-PDA. J Chromatogr B AnalytTechnol Biomed Life Sci. 2017;1057: 32–39. doi:10.1016 /j. jchromb.2017.04.048
45.    Joshi RR. Gupta KR. Patil SS et al Hyphenated Technique-A Boon to Analytical World. 2012;3(11):4184–4191. IJPSR: ICV (2011)- 5.07

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available