Author(s): Heba A. Yassin, Mohamed A. Sharaf, Hanna A. El-Ghamry, Abdelaziz E. Abdelaziz

Email(s): espeldin2@gmail.com

DOI: 10.52711/0974-360X.2023.00713   

Address: Heba A. Yassin1, Mohamed A. Sharaf2, Hanna A. El-Ghamry2, Abdelaziz E. Abdelaziz3
1Pharmaceutical Technology Department, Faculty of Pharmacy, Al-Salam University, Tanta, Egypt.
2Pharmaceutical Technology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
3Pharmaceutical Technology Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
*Corresponding Author

Published In:   Volume - 16,      Issue - 9,     Year - 2023


ABSTRACT:
The aim of this study was to create controlled release matrix tablets of Dyphylline, a xanthine derivative used for the management of various respiratory conditions such as asthma, cardiac dyspnea, chronic bronchitis, and emphysema. The researchers employed a direct compression method and various polymers to achieve this. The resulting matrix tablets were evaluated through infrared spectral analysis, differential thermal analysis, and evaluations of hardness, friability, content uniformity, and in-vitro drug release. The release profiles were also analyzed through different kinetic orders. The results showed that all Dyphylline formulae followed Higuchi's diffusion model, indicating that diffusion is the mechanism of drug release from the controlled matrix tablets. The infrared and differential thermal analyses demonstrated that there was no incompatibility between Dyphylline, and the polymers used in the formulations. The study concluded that the direct compression method is an effective approach for the formulation of hydrophilic Dyphylline and that a high polymer content leads to a longer T1/2 and decreased drug release due to improved retention.


Cite this article:
Heba A. Yassin, Mohamed A. Sharaf, Hanna A. El-Ghamry, Abdelaziz E. Abdelaziz. Preparation and in-vitro evaluation of dyphylline controlled release matrix tablets. Research Journal of Pharmacy and Technology 2023; 16(9):4357-4. doi: 10.52711/0974-360X.2023.00713

Cite(Electronic):
Heba A. Yassin, Mohamed A. Sharaf, Hanna A. El-Ghamry, Abdelaziz E. Abdelaziz. Preparation and in-vitro evaluation of dyphylline controlled release matrix tablets. Research Journal of Pharmacy and Technology 2023; 16(9):4357-4. doi: 10.52711/0974-360X.2023.00713   Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-9-57


REFERENCES:
1.    John, C.; Morten, C., The Science of Dosage Form Design, Aulton: Modified Release Peroral Dosage Forms. Churchill Livingstone. 2002.
2.    Gardouh, A. R.; Srag El-Din, A. S. G.; Salem, M. S. H.; Moustafa, Y.; Gad, S., Starch Nanoparticles for Enhancement of Oral Bioavailability of a Newly Synthesized Thienopyrimidine Derivative with Anti-Proliferative Activity Against Pancreatic Cancer. Drug Des Devel Ther. 2021; 15: 3071-3093. DOI: 10.2147/DDDT.S321962
3.    Samuel, G.; Nazim, U.; El-Din, A. S., Physicochemical characterization of Novel Particulate Delivery Systems for Antitumor/metastatic Therapeutics. Research Journal of Pharmacy and Technology. 2021; 14: 4837-4844. DOI: 10.52711/0974-360X.2021.00840
4.    Suman, K.; Raparla, R. K.; Eswara, T.; Murthy, G. K., Formulation and optimization of directly compressible ambroxol HCl controlled release matrix tablets. Research Journal of Pharmacy and Technology. 2010; 3: 263-266.
5.    Gardouh, A. R.; El-Din, A. S. S.; Mostafa, Y.; Gad, S., Starch Nanoparticles Preparation and Characterization by in situ combination of Sono-precipitation and Alkali hydrolysis under Ambient Temperature. Research Journal of Pharmacy and Technology. 2021; 14: 3543-3552.    DOI : 10.52711/0974-360X.2021.00614
6.    Samuel, G.; Nazim, U.; El-Din, A. S., Optimization of PLGA nanoparticles for delivery of Novel anticancer CK-10 peptide. Research Journal of Pharmacy and Technology. 2021; 14: 5371-5379.  DOI : 10.52711/0974-360X.2021.00937
7.    Gardouh, A., Srag El-Din, A. S., Moustafa, Y., Gad, S. Formulation factors of starch-based nanosystems preparation and their pharmaceutical application. Records of Pharmaceutical and Biomedical Sciences. 2021; 5: 28-39.  DOI:  10.21608/RPBS.2020.51097.1080
8.    Takasaki, H.; Yonemochi, E.; Messerschmid, R.; Ito, M.; Wada, K.; Terada, K., Importance of excipient wettability on tablet characteristics prepared by moisture activated dry granulation (MADG). International Journal of Pharmaceutics. 2013; 456: 58-64.  https://doi.org/10.1016/j.ijpharm.2013.08.027
9.    Srag El-Din, A., Azithromycin loaded chitosan nanoparticles preparation and in-vitro characterization. Delta University Scientific Journal 2022; 5: 214-225. DOI: 10.21608/dusj.2022.275433
10.    Kumari, S.; Kumar, R.; Shetty, P.; Suvarna, P.; Swamy, N. V., Formulation and Evaluation of Gastro Retentive Matrix Tablets of Sitagliptin. Asian Journal of Research in Pharmaceutical Science. 2016; 6: 1-14. DOI : 10.5958/2231-5659.2016.00001.1
11.    Di Martino, P.; Joiris, E.; Martelli, S., Particle interaction of lubricated or unlubricated binary mixtures according to their particle size and densification mechanism. Il Farmaco. 2004; 59: 747-758. https://doi.org/10.1016/j.farmac.2004.04.003
12.    Ibrahim, Y.; Olurinola, P., Comparative microbial contamination levels in wet granulation and direct compression methods of tablet production. Pharmaceutica Acta Helvetiae. 1991; 66: 298-301. DOI: 1758889  
13.    Yasmeen, R.; Shoaib, M. H.; Khalid, H., Comparative study of different formulations of atenolol. Biochem. Biophys. Acta. 2005; 577: 346-359.  DOI: PMID: 16431383
14.    Desai, U.; Chaudhari, P.; Bhavsar, D.; Chavan, R., Melt granulation: An alternative to traditional granulation techniques. Indian Drugs. 2013; 50: 5-13.   DOI: 8624973
15.    Jivraj, M.; Martini, L. G.; Thomson, C. M., An overview of the different excipients useful for the direct compression of tablets. Pharmaceutical Science & Technology Today. 2000; 3: 58-63. https://doi.org/10.1016/S1461-5347(99)00237-0
16.    Iturriaga, H.; Coello, J.; Maspoch, S.; Porcel, M., Kinetic–spectrophotometric determination of theophylline, dyphylline, and proxyphylline by use of partial least-squares regression. Analytical and Bioanalytical Chemistry. 2002; 374: 33-38.           https://doi.org/10.1007/s00216-002-1341-8
17.    Siddam, H.; Kotla, N. G.; Maddiboyina, B.; Singh, S.; Sunnapu, O.; Kumar, A.; Sharma, D., Formulation and evaluation of atenolol floating bioadhesive system using optimized polymer blends. International Journal of Pharmaceutical Investigation. 2016; 6: 116.  doi: 10.4103/2230-973X.177832
18.    Blanco, M.; Valverde, I., Application of micellar electrokinetic chromatography to the quality control of a pharmaceutical preparation containing three bronchodilators. Electrophoresis. 2002; 23: 578-583. https://doi.org/10.1002/1522-2683(200202)23:4<578::AID-ELPS578>3.0.CO;2-C
19.    Huang, W.S.; Lin, S.J.; Wu, H.L.; Chen, S.H., Simultaneous determination of theophylline and dyphylline by micellar electrokinetic chromatography and application in drug formulations. Journal of Chromatography B. 2003; 795: 329-335. https://doi.org/10.1016/S1570-0232(03)00601-9
20.    Dyer, J., Absorption of common functional groups, Application of Absorption Spectroscopy of Organic Compounds. 7th. New Delhi, Prentice Hall of India, Pvt. Ltd: 1989.
21.    Elkomy, M. H.; El-Menshawe, S. F.; Ali, A. A.; Halawa, A. A.; El-Din, A. S. S., Betahistine dihydrochloride transdermal delivery via optimized thermosensitive gels: percutaneous absorption evaluation using rat growth as a biomarker. Drug Delivery and Translational Research. 2018; 8: 165-177. https://doi.org/10.1007/s13346-017-0449-5
22.    El-Menshawe, S. F.; Ali, A. A.; Halawa, A. A.; Srag El-Din, A. S., A novel transdermal nanoethosomal gel of betahistine dihydrochloride for weight gain control: in-vitro and in-vivo characterization. Drug Des Devel Ther. 2017; 3377-3388. https://doi.org/10.2147/DDDT.S144652
23.    Arora, G.; Malik, K.; Singh, I.; Arora, S.; Rana, V., Formulation and evaluation of controlled release matrix mucoadhesive tablets of domperidone using Salvia plebeian gum. Journal of Advanced Pharmaceutical Technology & Research. 2011; 2: 163. DOI:  22171313
24.    Shoaib, M. H.; Tazeen, J.; Merchant, H. A.; Yousuf, R. I., Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC. Pakistan Journal of Pharmaceutical Sciences. 2006; 19: 119-124. DOI: emr-80004
25.    Kommineni, V.; Chowdary, K.; Prasad, S., Formulation of Dapagliflozin and Saxagliptin Tablets and In vitro Evaluation by RP-HPLC Method. Asian Journal of Pharmaceutical Analysis. 2019; 9: 93-98. DOI : 10.5958/2231-5675.2019.00018.8
26.    Reddy, Y. K.; Asha, C., Formulation and Evaluation of Oral Controlled Release Matrix Tablets of Propranolol Hydrochloride. Asian Journal of Pharmaceutical Research. 2020; 10: 81-85. DOI : 10.5958/2231-5691.2020.00015.5
27.    El-Deen, E. Z.; Ghorab, M.; Gad, S.; Yassin, H., In-vitro evaluation and kinetic estimation of a proposed drug delivery system containing ketorolac. Eur. J. Pharm. & Med. Res. 2016; 3: 137-148.
28.    Korsmeyer, R. W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N. A., Mechanisms of solute release from porous hydrophilic polymers. International Journal of Pharmaceutics. 1983; 15: 25-35. https://doi.org/10.1016/0378-5173(83)90064-9
29.    Sekharan, T. R.; Palanichamy, S.; Tamilvanan, S.; Shanmuganathan, S.; Thirupathi, A. T., Formulation and evaluation of hydroxypropyl methylcellulose-based controlled release matrix tablets for theophylline. Indian Journal of Pharmaceutical Sciences. 2011; 73: 451. doi: 10.4103/0250-474X.95649
30.    Wójcik-Pastuszka, D.; Krzak, J.; Macikowski, B.; Berkowski, R.; Osiński, B.; Musiał, W., Evaluation of the release kinetics of a pharmacologically active substance from model intra-articular implants replacing the cruciate ligaments of the knee. Materials. 2019; 12: 1202. https://doi.org/10.3390/ma12081202
31.    Sahoo, C. K.; Rao, S. R. M.; Sudhakar, M.; Ramana, D. V.; Satyanarayana, K., Formulation and optimization of porous osmotic pump based controlled release system of Ritonavir for the treatment of HIV infection. Asian Journal of Pharmacy and Technology. 2018; 8: 13-22.  https://doi.org/10.1208/pt0803053
32.    Billa, N.; Yuen, K.-H., Formulation variables affecting drug release from xanthan gum matrices at laboratory scale and pilot scale. AAPS Pharmscitech. 2000; 1: 35-42. https://doi.org/10.1208/pt010430
33.    Andreopoulos, A.; Tarantili, P., Xanthan gum as a carrier for controlled release of drugs. Journal of Biomaterials Applications 2001; 16: 34-46.   DOI: 10.1106/XBFG-FYFX-9TW9-M83U


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available