Author(s): C. Manivannan, S. Baskaran, K. A. Sharanya, N. Vedichi, V. Anbazhagan

Email(s): anbu80@gmail.com

DOI: 10.52711/0974-360X.2023.00712   

Address: C. Manivannan1, S. Baskaran2, K. A. Sharanya3, N. Vedichi4, V. Anbazhagan4*
1Photonics Laboratory, Department of Chemistry, Bannari Amman Institute of Technology, Erode, Tamil Nadu, India.
2Southern University of Science and Technology, Shenzhen 518055, P. R. China.
3Department of Chemistry, Mother Theresa Women’s University, Kodaikanal - 624101, Tamil Nadu, India.
4Department of Chemistry, Vinayaka Mission’s Kirupananda Variyar Arts and Science College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamil Nadu, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 9,     Year - 2023


ABSTRACT:
The photoinduced interaction of nile blue (NB) with various antioxidant molecules was investigated by fluorescence quenching technique and lifetime measurements. The various substituted catecholic compounds are employed as quenchers to evaluate their antioxidant activity. Formations of ground state complex between NB and quencher molecules was observed from the UV-Visible spectroscopy. Bimolecular quenching rate constants (kq) values depend on presence of substituent and its electronic properties of quencher molecules. Fluorescence quenching experiments have been performed at three different temperatures to assess the thermodynamic parameters. Time resolved fluorescence measurements suggest that the fluorescence quenching of NB with antioxidant molecules undergoes static quenching mechanism. Bond dissociation enthalpy (BDE) values reveal the discharge of H* from the antioxidant molecules. The electronic properties play an important role in the antioxidant activity of quencher molecules. Mechanism of fluorescence quenching between NB and quencher molecules are analysed based on the fluorescence quenching, cyclic voltammetry experiments and BDE calculations.


Cite this article:
C. Manivannan, S. Baskaran, K. A. Sharanya, N. Vedichi, V. Anbazhagan. Spectroscopic Study on the Reaction of Singlet-Excited Nile blue with certain catecholic antioxidants. Research Journal of Pharmacy and Technology 2023; 16(9):4350-6. doi: 10.52711/0974-360X.2023.00712

Cite(Electronic):
C. Manivannan, S. Baskaran, K. A. Sharanya, N. Vedichi, V. Anbazhagan. Spectroscopic Study on the Reaction of Singlet-Excited Nile blue with certain catecholic antioxidants. Research Journal of Pharmacy and Technology 2023; 16(9):4350-6. doi: 10.52711/0974-360X.2023.00712   Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-9-56


REFERENCES:
1.    Lin C.W. Shulok J.R. Wong K.Y. Schanbacher F.C. Cincotta L. Foley J.W. Photosensitization, Uptake, and Retention of Phenoxazine Nile Blue Derivatives in Human Bladder Carcinoma Cells. Cancer Res. 1991; 51: 1109 ̶ 1116.
2.    Lin C.W. Shulok J.R. Kirley S.D.Cincotta L. Foley J.W. Lysosomal Localization and Mechanism of Uptake of Nile Blue Photosensitizers in Tumor Cells. Cancer Res. 1991; 51: 2710  ̶  2719.
3.    Ghoneim N. Suppan P. Solvatochromic shifts of non-dipolar molecules in polar solvents.Spectrochim Acta Part A: Biomolecular Spectroscopy. 2000; 56: 1003 ̶ 1010. doi.org/10.1016/0584-8539(94)00196-I
4.    Ghanadzadeh A. Zeini A. Kashef A. Moghadam M. Solvent polarizability and anisotropy effects on the photophysicalbehavior of oxazine 1: An appropriate polarizability indicator dye. SpectrochimActa Part A: Biomolecular Spectroscopy. 2009; 73:  324  ̶  329.doi.org/10.1016/j.saa.2009.02.029
5.    Gilani G. Moghadam M. Zakerhamidi M.S. Solvatochromism of Nile red in anisotropic media. Dyes and Pigments. 92 (2012) 1052  ̶  1057.doi.org/10.1016/j.dyepig.2011.07.018.
6.    Navajas J.G. Aguilar Caballos M.P. Gómez-Hens A.Agric J.Heterogeneous immunoassay for soy protein determination using nile blue-doped silica nanoparticles as labels and front-surface long-wavelength fluorimetry. Analytica Chimica Acta, 2011; 59 (6): 2235  ̶  2240. doi.org/10.1016/j.aca.2011.06.005.
7.    Qiu-ying Chen, Dong-hui Li,   Huang-hao Yang,   Qing-zhi Zhu,   Jin-gou Xu  and  Yang Zhao, Interaction of a novel red-region fluorescent probe, Nile Blue, with DNA and its application to nucleic acids assay. 1999; 124: 901-906: https://doi.org/10.1039/A901174I
8.    Mitra R. Sinha S.S. Pal S.K. Temperature-Dependent Simultaneous Ligand Binding in Human Serum Albumin,  J. Fluoresc. 2008; 18: 423 ̶ 432, doi.org/10.1021/jp709809b.
9.    Shimizu T. et al. Structure Effect on Antioxidant Activity of Catecholamines toward Singlet Oxygen and Other Reactive Oxygen Species in vitroJournal of Clinical Biochemistry and Nutrition. 2010; 47(3): 181–190.doi.org/10.3164/jcbn.09-112.
10.    Duthie S.J. Dobson V.L. Nutr J. Absorption and DNA protective effects of flavonoid glycosides from an onion meal. 2000; 9: 213–223, doi.org/10.1007/s003940070014
11.    Jiankang Liu, Akitane Mori, Monoamine metabolism provides an antioxidant defense in the brain against oxidant-and free radical-induced damage, Arch. Biochem. Biophys. 1993; 302(1): 118–127
12.    Ermi A. Lia F. Asian Screening Phytochemical, Antioxidant Activity and Vitamin C Assay from Bungoperak-perak (Begonia versicolar Irmsch) leavesJ. Pharm. Res. 2020; 10(3):183-187.Doi. 10.5958/2231-5691.2020.00032.5.
13.    Sevakumar K. Madhan R. Srinivasan G. Baskar V., Antioxidant Assays in Pharmacological Reseach, Antioxidant Assays in Pharmacological Research. 2011; 99-103.
14.    Vijay K. P. Chirag K.Harsha U. P. Patel C.,Vitamins, Minerals and Carotenoids as a Antioxidants. Asian J. Research Chem. 2010; 3(2): 255-260.
15.    Chithra. V.S. Abbs F. R. Brindha T.F, Synthesis and Structure-Activity Relationship Study of Novel Isoxazole derivatives as Promising Antioxidants. Asian Journal of Research in Chemistry.  2018; 11(1): 65-68.10.5958/0974-4150.2018.00014.7
16.    Jaydeokar A.V. Bandawane D. Nipate S.S. Chaudhari P.D.,Natural Antioxidants: A Review on Therapeutic Applications, Research J. Pharmacology and Pharmacodynamics. 2012; 4(1): 55-61.
17.    Anbazhagan V. Kandavelu V. Kathiravan A. Renganathan R. Investigation on the fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by certain estrogens and catecholsJ. Photochem. Photobiol. A: Chem. 2008; 193: 204-212.  doi.org/10.1016/j.jphotochem.2007.06.026.
18.    Povie G. Villa G. Ford L.Pozzi D.Role of catechol in the radical reduction of B-alkylcatecholboranes in presence of methanol Chem. Commun. 2010; 46: 803–805.
19.    Yen G.C. Hsieh C.L.Antioxidant Effects of Dopamine and Related Compounds, Biosci. Biotech. Biochem. 1997; 61 (10): 1646–1649. doi.org/10.1271/bbb.61.1646.
20.    M.A. Miranda, J.V. Castell, D. Hembdez, M.J. Girmez-Lechbn, F. Bosc, I.M. Morera Z. Sarabia, Drug-Photosensitized Protein Modification:  Identification of the Reactive Sites and Elucidation of the Reaction Mechanisms with Tiaprofenic Acid/Albumin as Model System, Chem.Res.Toxicol. 1998; 11(3): 172–177. https://doi.org/10.1021/tx970082d
21.    Selvam R. Anandhi D. Saravanan D. Revathi K., Antioxidant Properties of Punicagrantum Fruit rind extract against liver Hepatocellular Carcinoma studied in HEPG2 Cell Line,Research J. Pharm. and Tech. 2019; 12(10): 4719-4723.
22.    Fellah K. Amrouche A.Benmehdi H.Memmou F.Phenolic profile, antioxidants and kinetic properties of flavonoids and Tannins Fractions isolated from Prunuspersica L. leaves growing in Southwest Algeria Research J. Pharm. and Tech 2019; 12(9):4365-4372.DOI: 10.5958/0974-360X.2019.00751.0.
23.    Manivannan C. Renganathan R. A study on the fluorescence quenching of 9-Aminoacridine by certain antioxidants, Journal of Luminescence. 2011; 131(11): 2365–2371.  doi.org/10.1016/j.jlumin.2011.05.050.
24.    Manivannan C.Renganathan R.An investigation on the fluorescence quenching of 9-aminoacridine by certain pyrimidines. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2011; 82(1): 475– 480. doi.org/10.1016/j.saa.2011.07.080.
25.    Manivannan C.Renganathan R.Investigations on photoinduced interaction of 9-aminoacridine with certain catechols and rutin J. Fluoresc. 2012; 22(4): 1113 – 1125. doi.org/10.1007/s10895-012-1050-4.
26.    Manivannan C.Renganathan R.Interaction of acriflavine with pyrimidines: A spectroscopic approach SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy. 2013; 114: 316–322.doi.org/10.1016/j.saa.2013.05.034.
27.    Manivannan C. Vijay Solomon R. Venuvanalingam P. Renganathan R., A Spectroscopic Approach with Theoretical Studies to Study the Interaction of 9-aminoacridine with Certain Phenols  J. Phys. Chem. 2016; 231 (5): 1–18. doi.org/10.1515/zpch-2015-0695.
28.    Manivannan C.Renganathan R.Spectroscopic investigation and computational studies on the interaction of Acriflavine with various estrogens. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2019; 206: 622–629. doi.org/10.1016/j.saa.2018.07.047.
29.    Manivannan C. Renganathan R. Anbazhagan V. Spectroscopic Study on the Reaction of Singlet-Excited Nile Blue with Certain Antioxidants. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2021; 246: 119011–119016. doi.org/10.21203/rs.3.rs-543930/v1.
30.    Ruchi Y.Prachi S. Interaction Study of Antioxidants with Progressive Myoclonus Epilepsy by Molecular Docking Techniques. Research Journal of Pharmacy and Technology. 2019; 12(2): 584-588.DOI : 10.5958/0974-360X.2019.00104.5.
31.    Vidya R, Kalaivani K. Determination of Free Radical Scavenging Potential in Cucumismelo (L).Fruit Extract. Research Journal of Pharmacy and Technology. 2021; 14(10):5084-8.
32.    Ravi N. Urviben Y. Dhrubo J. Determination of Free Radical Scavenging Potential in Cucumismelo (L). Fruit Extract. Research J. Science and Tech. 2010; 2(5): 89-94.
33.    Becke A.D., Basis‐set‐free local density‐functional calculations of geometries of polyatomic molecules The Journal of Chemical Physics. 1993; 98: 5648–5652.doi.org/10.1063/1.466134
34.    Lee C. Yang W. Parr R.G.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B. 1988; 37: 785–789. doi.org/10.1103/PhysRevB.37.785.
35.    Vosko S.H. Wilk L. Nusair C.Scavenging Potential in Cucumismelo (L). Fruit Extract. J. Phys. 1980; 58: 1200–1211.
36.    Stephens P.J. Devlin F.J. Chabalowski C.F. Frisch M. J.Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields J. Phys. Chem. 1994; 98: 11623–11627.doi.org/10.1021/j100096a001.
37.    R. Ditchfield, W. J. Hehre, and J. A. Pople, Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules, J. Chem. Phys. 1971; 54, 724–728. https://doi.org/10.1063/1.1674902
38.    Hariharan P.C. Pople J.A Theor C. Molecular orbital theory of the electronic structure of organic compounds. XIX. Geometries and energies of C3H5 cations. Energy relations among allyl, vinyl, and cyclopropyl cations. Acta. 1973; 28: 213–222. doi.org/10.1021/ja00801a003.
39.    Hehre W. J. Ditchfield R.Pople J.A, Physical methods part III Theritical Organic Chemistry and ESCA J. Chem. Phys. 1972; 56: 2257–2261.
40.    Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
41.    Rasoulzadeh F. Asgari D. Naseri A.Rashidi M.R.,spectroscopic studies on the interaction between erlotinib hydrochloride and bovine serum albumin. J. Pharm. Sci. 2010; 18(3): 179–184.
42.    Y.Z.Zheng, G. Deng,R.Guo, Da-Fu Chen and Z.M. Fu, Substituent Effects on the Radical Scavenging Activity of Isoflavonoid, Int. J. Mol. Sci. 2019; 20(2): 385–397. https://doi.org/10.3390/ijms20020397
43.    LundgrenC.V.KonerA.L.TinklM.PischelU.Kinetic Solvent Effects on Hydrogen Abstraction Reactions from Carbon by the Cumyloxyl Radical. The Role of Hydrogen Bonding. J. Org. Chem. 2006; 71: 1977–1983.doi.org/10.1021/ol101448e.
44.    G.B. Dutt, S. Doraiswamy, N. Periasamy, Molecular reorientation dynamics of polar dye probes in tertiary‐butyl alcohol–water mixtures, J. Chem. Phys. 1991; 94: 5360–5368, https://doi.org/10.1063/1.460521
45.    Rehm D. Weller A. Ber B.Kinetik und Mechanismus der Elektronübertragungbei der Fluoreszenzlöschung in Acetonitril. Phys. Chem. 1969; 73: 834–839. https://doi.org/10.1002/bbpc.19690730818
46.    P.D. Ross, S. Subramanian, Thermodynamics of protein association reactions: forces contributing to stability, Biochemistry; 1981; 20: 3096–3102. DOI: 10.1021/bi00514a017
47.    Armitage B. Koch T.Frydenlund H. Orum H.Hairpin-Forming Peptide Nucleic Acid Oligomers. Biochemistry. 1998;  37: 9417–9425.doi.org/10.1021/bi9729458.
48.    Ji H.F. Zhang H.Y.A CCSD estimation of the O–H bond dissociation enthalpies of pyrogallol. New Journal of Chemistry. 2005; 29: 535–537.doi.org/10.1039/B416841K.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available