Author(s): Sutopo Hadi, Noviany Noviany, Setyanto Tri Wahyudi

Email(s): sutopo.hadi@fmipa.unila.ac.id

DOI: 10.52711/0974-360X.2023.00661   

Address: Sutopo Hadi1*, Noviany Noviany1, Setyanto Tri Wahyudi2
1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Bandar Lampung 35145, Indonesia.
2Department of Physics, IPB University, Bogor, 16680, Indonesia.
*Corresponding Author

Published In:   Volume - 16,      Issue - 9,     Year - 2023


ABSTRACT:
The triphenyltin (IV) hydroxide reaction by 2-, 3-, as well as 4-aminobenzoic acid was used to analyze the molecular docking of some triphenyltin (IV) aminobenzoate compounds in this research. These include; triphenyltin (IV) 2-aminobenzoate (2), triphenyltin (IV) 3-aminobenzoate (3) as well as triphenyltin (IV) 4-aminobenzoate (4) were well characterized by means of some spectroscopy techniques and microelemental analysis. The molecular docking was conducted on protein isolated from SARS-Cov-2 virus. The protein chosen was MPro and was docked toward the three compounds synthesized and compared with the commercial drug used for the treatment of virus, boceprevir. Based on the analysis of the energy binding calculation, the result revealed that the energy binding of the compounds 2-4 was -9.74; -9.97 and 10.42kcal/mol, respectively, while for boceprevir was -9.60kcal/mol. These results indicated that the three compounds were stronger as antivirus than the standard drug used, thus they are potentially used and developed as drugs in the treatment of virus SARS-Cov-2.


Cite this article:
Sutopo Hadi, Noviany Noviany, Setyanto Tri Wahyudi. Molecular docking of some Triphenyltin (IV) aminobenzoate compounds as potential antiviral agents. Research Journal of Pharmacy and Technology 2023; 16(9):4032-6. doi: 10.52711/0974-360X.2023.00661

Cite(Electronic):
Sutopo Hadi, Noviany Noviany, Setyanto Tri Wahyudi. Molecular docking of some Triphenyltin (IV) aminobenzoate compounds as potential antiviral agents. Research Journal of Pharmacy and Technology 2023; 16(9):4032-6. doi: 10.52711/0974-360X.2023.00661   Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-9-5


REFERENCES:
1.    WHO (World Health Organization). WHO announces COVID-19 outbreak a pandemic, 2020. https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic. (Accessed on November 10, 2021)
2.    Singhal T. A Review of Coronavirus Disease-2019 (COVID-19). Indian Journal of Pediatrics. 2020; 87(4): 281-6.doi: 10.1007/s12098-020-03263-6
3.    Mor S, Saini P, Wangnoo SK, Bawa T. Worldwide spread of COVID-19 Pandemic and risk factors among Co-morbid conditions especially Diabetes Mellitus in India. Research Journal of Pharmacy and Technology. 2020; 13(5):2530-2532. doi: 10.5958/0974-360X.2020.00450.3
4.    Menon S, Bhagat V. Review of the impact Covid-19 has on the Psychosocial factors affecting Well-Being. Research Journal of Pharmacy and Technology. 2021; 14(6):3404-3408. doi: 10.52711/0974-360X.2021.00592
5.    Menon S, Bhagat V. A Review Study on the impact of COVID-19 on Mental Health in the workplace and on working people. Research Journal of Pharmacy and Technology. 2021; 14(12):6725-1. doi: 10.52711/0974-360X.2021.01162
6.    https://www.worldometers.info/coronavirus/ (Accessed on July 18, 2022)
7.    Baildya N, Ghosh NN, Chattopadhyay AP. Inhibitory activity of hydroxychloroquine on COVID-19 main protease: An insight from MD-simulation studies. Journal of Molecular Structure. 2020 5; 1219: 128595.doi: 10.1016/j.molstruc.2020.128595
8.    Yang A, Yang C, Yang B. Use of hydroxychloroquine and interferon alpha-2b for the prophylaxis of COVID-19. Medical Hypotheses. 2020; 144: 109802.
9.    Hedenstierna G, Chen L, Hedenstierna M, Lieberman R, Fine DH. Nitric oxide dosed in short bursts at high concentrations may protect against Covid 19. Nitric Oxide - Biology and Chemistry. 2020; 103: 1-3
10.    Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. International Journalof Antimicrobial Agents. 2020; 55(4): 105932.doi: 10.1016/j.ijantimicag.2020.105932.
11.    Keyaerts E, Li S, Vijgen L, Rysman E, Verbeeck J, Rants MV, Maes P. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrobial Agents and Chemotherapy. 2009; 53 (8): 3416-3421.doi: 10.1128/AAC.01509-08
12.    Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG,Seidah NG, Nichol ST. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology Journal. 2005; 22(2): 69.doi: 10.1186/1743-422X-2-69
13.    Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today's diseases?. The Lancet Infectious Diseases. 2003; 3(11): 722-7.doi: 10.1016/s1473-3099(03)00806-5
14.    DevauxCA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19?.International Journal of Antimicrobial Agents. 2020 May;55(5): 105938.doi: 10.1016/j.ijantimicag.2020.105938
15.    Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research. 2020; 30(3): 269-71.doi: 10.1038/s41422-020-0282-0
16.    Shah FA, Sabir S, Fatima K, Ali S, Qadri I, Rizzoli C. Organotin(IV) based anti-HCV drugs: Synthesis, characterization and biochemical activity. Dalton Transactions. 2015; 44(22): 10467-78. doi: 10.1039/C5DT00862J
17.    Shah FA, Fatima K, Ali S, Qadri I. Design, synthesis, and delivery studies of organotin(IV) based HCV inhibitor. Infectious Disorders-Drug Targets. 2015; 15(3): 153-62. doi: 10.2174/1871526515666150903121956
18.    Hadi S, Noviany, Qudus HI, Wattana-Amorn P. The Potency Study of Organotin (IV) 3-Nitrobenzoate Compounds as Antimalarial Agents. Journal of Physics: Conference Series. 2019; 1338: 012012. doi:10.1088/1742-6596/1338/1/012012
19.    Hadi S, Fenska MD, Noviany N, Satria H, Simanjuntak W, Naseer MM. Synthesis and Antimalarial Activity of Some Triphenyltin(IV) Aminobenzoate Compounds against Plasmodium falciparum. Main Metal Group Chemistry. 2021; 44(1): 256-60. doi: 10.1515/mgmc-2021-0028
20.    Hadi S, Noviany N, Rilyanti M. In Vitro Antimalarial Activity of Some Organotin(IV) 2-Nitrobenzoate Compounds Against Plasmodium falciparum. Macedonian Journal of Chemistry and Chemical Engineering. 2018; 37(2): 185-91. doi: 10.20450/mjcce.2018.1414
21.    Hansch C,Verma RP. Larvicidal activities of some organotin compounds onmosquito larvae: A QSAR study. European Journal of Medicinal Chemistry. 2009; 44(1): 260-73. doi: 10.1016/j.ejmech.2008.02.040
22.    Tiekink ERT. Structural Chemistry of Organotin Carboxylates: a Review of the Crystallographic Literature. Applied Organometallic Chemistry. 1991; 5(1): 1-23.doi: 10.1002/aoc.590050102
23.    Szorcsik A, Nagy L, Gadja-Schrantz K, Pellerito L, Nagy E,Edelmann ET. Structural studies on organotin(IV) complexes formed with ligands containing {S, N, O} donor atoms, Journal of Radioanalytical and Nuclear Chemistry. 2002; 252 (3): 523-30.doi:10.1023/A:1015802820423
24.    Pellerito L, Nagy L. Organotin(IV)n+ complexes formed with biologically active ligands: equilibrium and structural studies, and some biological aspects. Coordination Chemistry Review. 2002; 224(1-2): 111-50.doi: 10.1016/S0010-8545(01)00399-X
25.    Annissa, Suhartati T, Yandri, Hadi S., Antibacterial Activity of Diphenyltin(IV) and Triphenyltin(IV) 3-Chlorobenzoate against Pseudomonas aeruginosa and Bacillus subtilis. Oriental Journal of Chemistry. 2017; 33(3): 1133-9.doi: 10.13005/ojc/330310
26.    Hadi S, Hermawati E, Noviany, Suhartati T, Yandri. Antibacterial Activity Test of Diphenyltin(IV) Benzoate Compound against Bacillus subtilis and Pseudomonas aeruginosa. Asian Journal of Microbiology, Biotechnology and Environmental Sciences. 2018; 20(1): 113-9.
27.    Hadi S, Lestari S, Suhartati T,Qudus HI, Rilyanti M, Herasari D, Yandri Y. Synthesis and comparative study on the antibacterial activity organotin (IV) 3-hydroxybenzoate compounds. Pure and Appllied Chemistry. 2021; 93(5): 623-8. doi: 10.1515/pac-2020-1103
28.    Rehman W, Badshah A, Khan S, Tuyet LTA. Synthesis, Characterization, Antimicrobial and Antitumor Screening of Some Diorganotin(IV) Complexes of 2-[(9H-Purin-6-ylimino)]-phenol. European Journal of Medicinal Chemistry. 2009; 44(10): 3981–5. doi: 10.1016/j.ejmech.2009.04.027
29.    Hadi S., Rilyanti M. Synthesis and in vitro anticancer activity of some organotin(IV) benzoate compounds. Oriental Journal of Chemistry. 2010; 26(3): 775-9.
30.    Hadi S, Rilyanti M, Suharso. In Vitro Activity and Comparative Studies of Some Organotin(IV) Benzoate Derivatives Against Leukemia Cancer Cell: L-1210. Indonesian Journal of Chemistry. 2012; 12(2): 172-7. doi: 10.22146/ijc.21359
31.    Sari W, Qudus HI, Hadi S. The Chemical Reactivity Study of Organotin(IV) 4-aminobenzoates Using Cyclic Voltammetry and Antioxidant Activity Test by the DPPH Method. Revista deChimie. 2020 ; 71(10): 28-37.doi: 10.37358/RC.20.10.8347
32.    Safiya sultana T, Umamaheswari S, Sivakumar M, Umar Khan S. De Novo In-silico Pharmacological Analysis of Herbal Phytoconstituents for COVID-19 Treatment. Research Journal of Pharmacy and Technology. 2022; 15(1):257-2. doi: 10.52711/0974-360X.2022.00042
33.    Redhwan MAM, Deka G, Varghese MM. Synthesis and Molecular docking studies of some new Pyrazoline derivatives for Antimicrobial properties. Research Journal of Pharmacy and Technology. 2020; 13(10): 4629-4634. doi: 10.5958/0974-360X.2020.00815.X
34.    Ramachandran S, Vimeshya N, Yokeshwaran K, Cheriyan BV, Aanandhi MV. Molecular Docking Studies as Antidepressant Agents, Synthetic Techniques, Antimicrobial Screening of Azetidine-2-One Derivatives- A Review. Research Journal of Pharmacy and Technology. 2020; 13(11): 5524-5528. doi: 10.5958/0974-360X.2020.00964.6
35.    Rao S, Bhat V, Fathima F, Kumar S, Verma R. In-silico studies of Novel triazole derivatives as inhibitor of 14α demethylase CYP51. Research Journal of Pharmacy and Technology. 2020; 13(12): 5806-10. doi: 10.5958/0974-360X.2020.01012.4
36.    Singh R, Pani Prasad K, Tiwari A, Pathak A, Srivastava P. Molecular docking and Simulation study to identify Antiviral agent by targeting MX protein against Betanodavirus causing viral nervous necrosis in Barramundi. Research Journal of Pharmacy and Technology. 2021; 14(3): 1405-11. doi: 10.5958/0974-360X.2021.00251.1
37.    Panchabhai VB, Butle SR, Ingole PG. Synthesis, characterization and molecular docking studies on some new N-substituted 2-phenylpyrido[2,3-d]pyrimidine derivatives. Research Journal of Pharmacy and Technology. 2021; 14(7): 3846-4. doi: 10.52711/0974-360X.2021.00667
38.    Kumar V, Kancharla S, Jena MK. In silico screening of FDA approved drugs predicts the therapeutic potentials of Antibiotic drugs against the papain like protease of SARS-CoV-2. Research Journal of Pharmacy and Technology. 2021; 14(8): 4035-9. doi: 10.52711/0974-360X.2021.00699
39.    Prachi Parvatikar, Bhaskar Saha, Sayandeep K. Das, R. Chandramouli Reddy, ShrilaxmiBagali, Raghavendra V. Kulkarni, Aravind V. Patil, Mallanagoud S. Biradar, Kusal K. Das. Molecular Docking Identifies Novel Phytochemical Inhibitors Against SARS-COV-2 for Covid-19 Therapy. Research Journal of Pharmacy and Technology. 2022; 15(2): 555-8. doi: 10.52711/0974-360X.2022.00090
40.    Holec̆ek J, Handlír̆ K, Nádvorník M, Lyc̆ka A. 13C and Sn NMR study of some triphenyltin(IV) carboxylates. Journal of Organometallic Chemistry. 1983; 258(2): 147-53. doi:10.1016/S0022-328X(00)99251-9
41.    Khoo LE, Smith FE. NMR Studies of Triorganotin Aminobenzoates. InorganicaChimica Acta. 1981; 53: L83-4. doi: 10.1016/S0020-1693(00)84749-0
42.    Molloy K.C., Blunden S.J., Hill R., Organotin biocides. Part 11. Triphenyltin benzoates: electronic versus steric control of structure. J. Chem. Soc., Dalton Trans.: Inorg. Chem. 1988; 5: 1259-1266.
43.    Sandhu GK, Verma SP, Moore LS, Parish RV. Triorganotin(IV) benzoates and aminobenzoates. Journal of Organometallic Chemistry. 1987; 321(1): 15-25.
44.    Swisher RG, Volcano JF, Chandrasekhar V, Day RO, Holmes RR. Pentacoordinated Structures of Triphenyltin Esters of Anthranilic Acid.; o-(Dimethylamino)benzoic Acid, and p-Aminobenzoic Acid Formed by Intramolecular Carboxylate Group Coordination1,2. Inorganic Chemistry. 1984; 23: 3147-52.
45.    Tzimopoulos D, Gdaniec M, Bakas T, Akrivos PD. Structural elucidation for triorganotin derivatives of 3-amino, 4-amino and 3,5-diaminobenzoate. Crystal structures of triphenyltin 4-aminobenzoate and trimethyl and triphenyltin 3,5-diaminobenzoate. Journal of Coordination Chemistry, 2009; 62: 1218–1231.
46.    Samsuar S, Simanjuntak W, Qudus HI, Yandri T,Herasari D, Hadi S. In Vitro Antimicrobial Activity Study of Some Organotin (IV) Chlorobenzoates against Staphylococcus aureus and Escherichia coli. Journal of Advanced Pharmacy and Education Research. 2021; 11(2): 17‒22. doi: 10.51847/kaijZKAFCO
47.    Chang MW, Ayeni C, Breuer S, Torbett BE. Virtual screening for HIV protease inhibitors: a comparison of AutoDock 4 and Vina. PloSone. 2010; 5(8): e11955.doi: 10.1371/journal.pone.0011955
48.    Seri J, Suwon K, Dong HS, Mi-Sun K. Inhibition of SARSCoV3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry. 2020; 35(1): 145-51. doi: 10.1080/14756366.2019.1690480
49.    Chohan ZH, Rauf A. Some Biologically Active Mixed Ligand Complexes of Co(II), Cu(II) and Ni(II) with ONO, NNO and SNO Donor Nicotinoylhydrazine-Derived Ligands. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry. 1996; 26: 591-604.doi:10.1080/00945719608004764
50.    Gershon H. Antifungal Activity of Bischelates of 5-, 7-, and 5,7-halogenated 8-quinols with copper(II). Determination of the long and short acces of the pores in the fungal spore wall. Journal of Medical Chemistry. 1974; 17(8): 824-7.doi: 10.1021/jm00254a009



Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available