Author(s): Mebarka Tekha, Abdelkader Hadjsaid, Ali Douadi

Email(s): mebarka.tekha@gmail.com

DOI: 10.52711/0974-360X.2023.00697   

Address: Mebarka Tekha, Abdelkader Hadjsaid, Ali Douadi
Kasdi Merbah University, Ouargla, Algeria.
*Corresponding Author

Published In:   Volume - 16,      Issue - 9,     Year - 2023


ABSTRACT:
This paper provides the molecular structure, electronic structure, and QSAR character of 18 carbanucleoside. These antivirals are useful in treating HIV-1 infection. It was determined by molecular mechanics, PM3, QSAR, and ab initio/HF 6-311G(d,p) and DFT/B3LYP 6-311G (d,p) basis sets. These methods were used to determine the structure, electronic properties and energy of studied molecules. The electronic parameters and the biological activity of this antiviral by studying the effect of substitutions of the basic nucleus (9h-purine), which have an effect on the electronic and structural properties of carbanucleoside. The values calculated are HOMO and LUMO, the heat of formation, dipole moments, and Mulliken charges. QSAR properties and Lipinski parameters have been reported and discussed in terms of reporting and analyzing carbanucleoside biological activity. Which indicates that the developed QSAR models are valid and of high quality (R2 = 0.85).


Cite this article:
Mebarka Tekha, Abdelkader Hadjsaid, Ali Douadi. Theoretical Studies of Molecular Structure, Drug Likeness and QSAR Modeling of some Carbocyclic Nucleosides against HIV-1. Research Journal of Pharmacy and Technology 2023; 16(9):4257-5. doi: 10.52711/0974-360X.2023.00697

Cite(Electronic):
Mebarka Tekha, Abdelkader Hadjsaid, Ali Douadi. Theoretical Studies of Molecular Structure, Drug Likeness and QSAR Modeling of some Carbocyclic Nucleosides against HIV-1. Research Journal of Pharmacy and Technology 2023; 16(9):4257-5. doi: 10.52711/0974-360X.2023.00697   Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-9-41


REFERENCES:
1.    Watson JD. Crick FH. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature.1953; 171: 737-738. b) Watson JD.  Crick FH. Genetical Implications of the Structure of Deoxyribonucleic Acid. Nature. 1953; 171: 964-967.https://doi.org/10.1038/171737a0
2.    Pawlotsky JM. Lunel F. Les virus transmissibles par le sang. 1996. b) Terzian H. Les virus, de la structure aux pathologies, Diderot Multimédia. 1998.
3.    Lévy JP. Traitements du SIDA: recherche de nouveaux médicaments et élaboration de thérapies géniques. 1991.
4.    Kumar N. Sing S. Gupta R. Plant Derived Ribosome Inactivating: An Overview. Research Journal of Pharmacy and Technology. 2010; 3(4): 1018-1022.
5.    Tüzün B. Erkoç Ş. Structural and electronic properties of unusual carbon Nanorods. Quantum Matter. 2012; 1(2): 136-148.https://doi.org/10.1166/qm.2012.1012
6.    Alagusundaram M. Chetty CM. Umasankari K. Anitha P. Gnanprakash K. andDhachinamoorthiD. Buccal Drug Delivery System–An Overview. Research Journal of Pharmacy and Technology. 2009; 2(4): 653-63.https://doi.org/10.22270/ujpr.v4i6.340
7.    Ciobanu M. Preda L. Savastru D. Savastru R. Carstea EM. Band Gaps for Some Specific Photonic Crystals Structures. Quantum Matter. 2013; 2(1): 60-66.https://doi.org/10.1166/qm.2013.1026
8.    Srivastava A. Jain S. Nagawat AK. Electronic properties of nitrogen doped armchair single wall nanotubes: Ab-initio study. Quantum Matter. 2013; 2(6): 469-473.https://doi.org/10.1166/qm.2013.1083
9.    Narayanan M. Peter AJ. Pressure and temperature induced non-linear optical properties in a narrow band gap quantum dot. Quantum Matter. 2012; 1(1): 53-58.https://doi.org/10.1166/qm.2012.1005
10.    Wijianto  B. Purnomo H. Nurrochmad A. Quantitative Structure Activity Relationship (QSAR) study and Biological evaluation on Mono-ketone analogs of Curcumin as Antioxidant. Research Journal of Pharmacy and Technology. 2020; 13(10): 4829-4835.https://doi.org/10.5958/0974-360X.2020.00850.1
11.    Bairy LK. Satyam SM.  Shetty P. An insight on pain modulation with gender and obesity: A systematic review. Research Journal of Pharmacy and Technology. 2020;13(12):6284-6290.https://doi.org/10.5958/0974 360X.2020.01093.8
12.    Topliss Kamath V. and Pai A. Application of Molecular Descriptors in Modern Computational Drug Design-An Overview. Research Journal of Pharmacy and Technology. 2017;   10(9):3237-3241.https://doi.org/10.5958/0974-360X.2017.00574.1
13.    Wang Z. Wang F. Su C. Zhang Y. Computer simulation of polymer delivery system by dissipative particle dynamics. Journal of Computational and Theoretical Nanoscience. 2013; 10(10): 2323-2327.https://doi.org/10.1166/jctn.2013.3208
14.    Eghdami A. Monajjemi M. Quantum modeling of alpha interferon subunits in point of nano anticancer drug. Quantum Matter. 2013; 2(4): 324-331.https://doi.org/10.1166/qm.2013.1064
15.    Reddy CH. Reddy G. Mahto MK. Kunala P. and Kanth RC. Insilico Design and Discovery of Some Novel Ache Inhibitors for Treatment of Alzheimer's Disorder. Research Journal of Pharmacy and Technology. 2012; 5(3):424-427.
16.    Nagarathna  PKM. Merlin TM. and Akhileshar PM. RNA as a Drug Target. Research Journal of Pharmacy and Technology. 2019;12(8):4018-4022.https://doi.org/10.5958/0974-360X.2019.00692.9
17.    Belaidi S. Mellaoui M. Electronic structure and physical-chemistry property relationship for oxazole derivatives by AB initio and DFT methods. Organic Chemistry International. 2011.https://doi.org/10.1155/2011/254064
18.    Belaidi S. Melkemi N. Bouzidi D. Molecular geometry and structure-property relationships for 1, 2-dithiole-3-thione derivatives. Int. J. Chem. Res.2012; 4: 134-139.http://dx.doi.org/10.9735/0975-3699.4.2.134-139
19.    Mellaoui M. Belaidi S. Bouzidi D. Gherraf N. Electronic structure and physical-chemistry property relationship for cephalosporin derivatives. Quantum Matter. 2014; 3(5): 435-441.https://doi.org/10.1166/qm.2014.1142
20.    Melkemi N. Belaidi S. Structure-property relationships and quantitative structure-activity relationship modeling of detoxication properties of some 1, 2-dithiole-3-thione derivatives. Journal of Computational and Theoretical Nanoscience. 2014; 11(3): 801-806.https://doi.org/10.1166/jctn.2014.3431
21.    Jalwal P. and Singh G. In silico and invitro Antidiabetic Characterization and ADME Studies of Rhusparviflora. Research Journal of Pharmacy and Technology. 2022; 15(9): 3919-3923.https://doi.org/10.52711/0974-360X.2022.00656
22.    Narayanan M. Peter AJ. Pressure and temperature induced non-linear optical properties in a narrow band gap quantum dot. Quantum Matter. 2012; 1(1): 53-58.https://doi.org/10.1166/qm.2012.1005
23.    Langueur H. Kassali K. Lebgaa N. Density Functional Study of Structural, Mechanic, Thermodynamic and Dynamic Properties of SiGe Alloys. Journal of Computational and Theoretical Nanoscience. 2013; 10(1): 86-94.https://doi.org/10.1166/jctn.2013.2662
24.    Belaidi S. Mazri R. Belaidi H. Lanez T. Bouzidi D. Electronic structure and physico-chemical property relationship for thiazole derivatives. Asian Journal of Chemistry. 2013; 25(16): 9241.https://doi.org/10.14233/ajchem.2013.15199
25.    Belaidi S. Almi Z. Bouzidi D. Electronic structure and physical-chemistry properties relationship for phenothiazine derivatives by quantum chemical calculations. Journal of Computational and Theoretical Nanoscience. 2014; 11(12): 2481-2488.https://doi.org/10.1166/jctn.2014.3665
26.    Mohapatra RK. Perekhoda L. Azam M. Suleiman M. Sarangi ,AK. Semenets A. Al-Resayes SI. Computational investigations of three main drugs and their comparison with synthesized compounds as potent inhibitors of SARS-CoV-2 main protease (Mpro): DFT, QSAR, molecular docking, and in silico toxicity analysis. Journal of King Saud University-Science. 2021; 33(2): 101315.https://doi.org/10.1016/j.jksus.2020.101315
27.    Rachmawati  W. Hasanah  AN., Muttaqin  FZ. andMuchtaridi  M. Computational Design for The Development of Monomer Selectivity to α-Mangostin in Molecularly Imprinted Polymer. Research Journal of Pharmacy and Technology. 2022;  15(8): 3663-3668. https://doi.org/10.52711/0974-360X.2022.00614
28.    Frisch M. Trucks G.  Schlegel  HEA. Scuseria GW. Robb MA. Cheeseman JR. Pople AJ. Gaussian 03, revision C. 02. 2004.
29.    Carter J. Developing a future pipeline of applied social researchers through experiential learning: The case of a data fellows programme. Statistical Journal of the IAOS, (Preprint). 2021; 1-16.https://doi.org/10.3233/SJI-210844
30.    Philips LA. Levy DH. The rotationally resolved electronic spectrum of indole in the gas phase. The Journal of Chemical Physics. 1986; 85(3):1327-1332.https://doi.org/10.1063/1.451219
31.    Takigawa T. Ashida T. Sasada Y. Kakudo M. The crystal structures of L-tryptophan hydrochloride and hydrobromide. Bulletin of the Chemical Society of Japan. 1966; 39(11): 2369-2378.https://doi.org/10.1246/bcsj.39.2369
32.    Gahan P B. Schwarzenbach, H. Anker P. The History and Future of Basic and Translational Cell-Free DNA Research at a Glance. Diagnostics. 2022; 12 (5): 1192. https://doi.org/10.3390/diagnostics12051192
33.    Hassan HB. Energy Gap and Infrared Frequencies of Benzamide and Di-Chlorine Benzamide from Density Functional Calculations. Research Journal of Pharmacy   and   Technology. (2018) ; 11(10): 4263-4266.https://doi.org/10.5958/0974-360X.2018.00781.3
34.    Kier L. Molecular orbital theory in drug research (Vol. 10). Elsevier. 2012.
35.    Miessler GL. Tarr DA. Inorganic Chemistry, Prentice-Hall. 1999.
36.    Viswanadhan VN. Ghose AK. Revankar GR. Robins RK. Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. Journal of Chemical Information and Computer Sciences. 1989; 29(3): 163-172.https://doi.org/10.1021/ci00063a006
37.    Ghose AK. Crippen GM. Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions. Journal of Chemical Information and Computer Sciences. 1987; 27(1): 21-35.
38.    Bodor N. Gabanyi Z. Wong CK. A new method for the estimation of partition coefficient. Journal of the American Chemical Society. 1989; 111(11): 3783-3786.https://doi.org/10.1021/ja00193a003
39.    Gavezzotti A. The calculation of molecular volumes and the use of volume analysis in the investigation of structured media and of solid-state organic reactivity. Journal of the American Chemical Society. 1983; 105(16): 5220-5225.https://doi.org/10.1021/ja00354a007
40.    Miller KJ. Additivity methods in molecular polarizability. Journal of the American Chemical Society. 1990; 112(23): 8533-8542.https://doi.org/10.1021/ja00179a044
41.    Ooi T. Oobatake M. Nemethy G. Scheraga HA. Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides. Proceedings of the National Academy of Sciences. 1987; 84(10): 3086-3090.https://doi.org/10.1073/pnas.84.10.3086
42.    Di L. Kerns E. Drug-like properties: concepts, structure design and methods from ADME to toxicity optimization. Academic press. 2015. https://doi.org/10.1016/B978-012369520-8.50003-6
43.    Pliška V. Testa B. Van de Waterbeemd H. Mannhold R. Kubinyi H. Timmerman H. Lipophilicity in Drug Action and Toxicology, Wiley-VCH. 1996.https://doi.org/10.1002/9783527614998
44.    Yavorski B. Detlaf A. Checklist of Physics. Editions Mir, Moscow. 1980; 376.
45.    Daelemans D. Vandamme AM. Shuto S. Matsuda A. Clercq ED. Stereospecificity of 6′-C-Neplanocin A Analogues as Inhibitors of S-Adenosylhomocysteine Hydrolase Activity and Human Immunodeficiency Virus Replication. Nucleosides and Nucleotides. 1998; 17(1-3): 479-486.https://doi.org/10.1080/07328319808005192
46.    Alexandre FR. Rahali R. Rahali H. Guillon S. Convard T. Fillgrove K. Raheem IT. Synthesis and antiviral evaluation of carbocyclic nucleoside analogs of nucleoside reverse transcriptase translocation inhibitor MK-8591 (4′-Ethynyl-2-fluoro-2′-deoxyadenosine). Journal of Medicinal Chemistry. 2018; 61(20): 9218-9228.https://doi.org/10.1021/acs.jmedchem.8b00141
47.    Van den Hof M. Blokhuis C. Cohen S. Scherpbier  HJ. Wit FW. Pistorius MCM. Kootstra NA. Teunissen CE. Mathot  RAAPajkrt D.. CNS penetration of ART in HIV-infected children. Journal of Antimicrobial Chemotherapy2018; 73(2): 484-489.
48.    Takamatsu Y. Tanaka Y. Kohgo S. Murakami S. Singh K.Das D. Venzon DJ. Amano M. Higashi-Kuwata N. Aoki M. Delino NS. Hayashi S. Takahashi S. Sukenaga Y. Haraguchi K. Sarafianos SG. Maeda K. MitsuyaH.. 4′‐modified nucleoside analogs: Potent inhibitors active againstentecavir‐resistant hepatitis B virus. Hepatology. 2015; 62(4): 1024-1036.https://doi.org/10.1002/hep.27962
49.    Lipinski CA. Lombardo F. Dominy BW. Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews. 2012; 64: 4-17.https://doi.org/10.1016/s0169-409x(00)00129-0
50.    Vistoli G. Pedretti A. Testa B. Assessing drug-likeness–what are we missing?. Drug Discovery Today. 2008; 13(7-8): 285-294.https://doi.org/10.1016/j.drudis.2007.11.007


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available