Author(s): Sudha Bansal, Dinesh Dhingra

Email(s): ,

DOI: 10.52711/0974-360X.2023.00589   

Address: Sudha Bansal, Dinesh Dhingra*
Department of Pharmaceutical Sciences, Guru Jambheshwar University of Sciences and Technology, Hisar- 125001, Haryana, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 8,     Year - 2023

In this study, sinapic acid was evaluated for its effect on depressive behavior of normal mice and stressed mice. Swiss albino male mice were given unpredictable mild stressors for twenty-one consecutive days to produce depressive behavior. Sinapic acid (5, 10, 20 mg/kg) and fluoxetine (20 mg/kg) were given orally to mice for twenty-one days in succession. Depressive behavior was detected by tail suspension test and sucrose preference test. After behavioral testing, biochemical estimations were performed in plasma (nitrite, corticosterone) and brain (MAO-A, malondialdehyde, reduced glutathione, catalase, TNF-a). Histopathological studies on the brain were also performed. The immobility time of mice in the tail suspension test was remarkably decreased by sinapic acid (5 and 10 mg/kg). Sinapic acid restored the decreased sucrose preference in mice exposed to the stress paradigm. It also remarkably lowered concentration of plasma nitrite and corticosterone; brain malondialdehyde, monoamine oxidase- A and TNF-a; and increased the concentration of brain catalase and GSH in normal mice and also stressed mice. Histopathological studies indicated protective effect of sinapic acid against hyperchromatic nuclei in the brain. Thus, sinapic acid produced remarkable antidepressant effect in normal mice and also stressed mice. The possible mechanisms for the observed antidepressant effect of sinapic acid might be through inhibition of brain MAO-A, amelioration of neuroinflammation and oxidative stress; decrease of plasma corticosterone and protection against hyperchromatic nuclei in the brain.

Cite this article:
Sudha Bansal, Dinesh Dhingra. Behavioral, Biochemical and Histopathological Evaluation of Sinapic acid for Antidepressant activity in Normal Mice and Stressed Mice. Research Journal of Pharmacy and Technology 2023; 16(8):3569-7. doi: 10.52711/0974-360X.2023.00589

Sudha Bansal, Dinesh Dhingra. Behavioral, Biochemical and Histopathological Evaluation of Sinapic acid for Antidepressant activity in Normal Mice and Stressed Mice. Research Journal of Pharmacy and Technology 2023; 16(8):3569-7. doi: 10.52711/0974-360X.2023.00589   Available on:

1.    Diagnostic and Statistical Manual of Mental Disorders. 5th ed. (DSM-5). Washington DC. 2013; American Psychiatric Publishing.
2.    Miura H. Ozaki N. Sawada M. Isobe K. Ohta T. Nagatsu T. A Link Between Stress and Depression: Shifts in the Balance between the Kynurenine and Serotonin Pathways of Tryptophan Metabolism and the Etiology and Pathophysiology of Depression. Stress. 2008; 11(3):198-209.
3.    Manji HK. Drevets WC. Charney DS. The Cellular Neurobiology of Depression. Nature Medicine. 2001; 7(5):541-7.
4.    Anacker C. Zunszain PA. Carvalho LA. Pariante CM. The Glucocorticoid Receptor: Pivot of Depression and of Antidepressant Treatment? Psychoneuroendocrinology. 2011; 36(3):415-425.
5.    Hodes GE. Kana V. Menard C. Merad M. Russo SJ. Neuroimmune Mechanisms of Depression. Nature Neuroscience. 2015; 18(10):1386-1393. 10.1038/nn.4113
6.    Miller AH. Norman Cousins Lecture. Mechanisms of Cytokine-Induced Behavioral Changes: Psychoneuroimmunology at the Translational Interface. Brain Behavior Immunity. 2009; 23(2):149-158.
7.    Gądek-Michalska A. Tadeusz J. Rachwalska P. Bugajski J. Cytokines, Prostaglandins and Nitric Oxide in the Regulation of Stress-Response Systems. Pharmacological Reports. 2013; 65(6):1655-1662.
8.    Vaswani M. Linda FK. Ramesh S. Role of Selective Serotonin Reuptake Inhibitors in Psychiatric Disorders: A Comprehensive Review. Progress in Neuropsychopharmacology and Biological Psychiatry. 2003, 27(1):85–102.
9.    Mittal S. Gupta P. Nigam V. Evaluation of Antidepressant-Like Effect of Clitoria ternatea Linn. Research Journal of Pharmacy and Technology. 2021; 14(12):6437-6441.
10.    Jaseela KP. Kumar A. VeereshBabu D. Narayana Swamy VB. Studies on Anti-Depressant and Anti-Inflammatory Activities of Curcuma aromatica Rhizome in Experimental Animal Models. Asian Journal of Pharmaceutical Research 2016; 6(2): 79-86.
11.    Shewale A. Naikwade NS. Ladda PL. Antidepressant Activity of Chrysanthemum morifolium Linn in Mice. Asian Journal of Research in Pharmaceutical Sciences. 2019; 9(4):260-266.
12.    Adnaik RS. Gavarkar PS. Mohite SK. Magdum CS. Anti-Depressant Activity of Ethanolic Extract of Citrullus vulgaris Seeds in Experimentally Induced Depressed Mice. Research Journal of Pharmacy and Technology. 2014; 7(6): 660-662.
13.    Uppala PK. Kumar KA. Patro SK. Murali KB. Experimental Evaluation of Antidepressant Activity of Aqueous and Chloroform Leaf and Shoot Extracts of Eicchornia srassipes Linn in Mice. Asian Journal of Research in Pharmaceutical Sciences. 2015; 5(3): 139-144.
14.    Chauhan K. Santwani P. Parmar L. Solanki R. Adeshara S. Evaluation of Antidepressant Activity of Ailanthus excelsa Roxb. using Mice as Experimental Animal. Research Journal of Pharmacology and Pharmacodynamics. 2011; 3(3): 102-104.
15.    Uppala PK. Latha SM. Reddy SR. Chakravarthi G. Evaluation of Anti-Depressant Activity of Methanolic Seed Extract of Avena sativa L. in Mice. Research Journal of Pharmacology and Pharmacodynamics. 2013; 5(4). 212-217.
16.    Anantha LJ. Satyavthi D. Evaluation of Antidepressant and MAO Inhibitory Activity of Rhodiola rhodantha Rhizome Methanolic Extract. Research Journal of Pharmacy and Technology. 2015; 8(3): 310-315.
17.    Uppala PK. Murali KB. Kumar KA. Ramji V. Experimental Evaluation of Antidepressant Activity of Aqueous and Methanolic Leaf and Shoot Extracts of Ageratum conyzoides Linn in Mice. Asian Journal of Pharmaceutical Research. 2016; 6(3): 153-158.    
18.    Velraj M. Ravichandiran V. Ramamoorthy S. Vijayalakshmi A. Srikanth J. Antidepressant-Like Effects of the Ethanolic Extract of Albizzia lebbeck (Linn) Leaves in Animal Models of Depression. Research Journal of Pharmacognosy and Phytochemistry 2010; 2(1): 30-33.
19.    Rahimi R. Nikfar S. Abdollahi M. Efficacy and Tolerability of Hypericum perforatum in Major Depressive Disorder in Comparison with Selective Serotonin Reuptake Inhibitors: A Meta-Analysis. Progress in Neuropsychopharmacology & Biological Psychiatry. 2009; 33(1):118-127.
20.    Araj-Khodaei M. Noorbala AA. Yarani R. Emadi F. Emaratkar E. Faghihzadeh S et al. A Double-Blind, Randomized Pilot Study for Comparison of Melissa officinalis L. and Lavandula angustifolia Mill. with Fluoxetine for the Treatment of Depression. BMC Complementary Medicine and Therapies. 2020; 20(1):207.
21.    Jam IN. Sahebkar AH. Eslami S. Mokhber N. Nosrati M. Khademi M et al. The Effects of Crocin on the Symptoms of Depression in Subjects with Metabolic Syndrome. Advances in Clinical and Experimental Medicine. 2017; 26(6):925-930.
22.    Cao ZY. Liu YZ. Li JM. Ruan YM. Yan WJ. Zhong SY et al. Glycyrrhizic Acid as an Adjunctive Treatment for Depression through Anti-Inflammation: A Randomized Placebo-Controlled Clinical Trial. Journal of Affective Disorders. 2020; 265:247-54.
23.    Hameed H. Aydın S. Basaran N. Sinapic Acid: Is It Safe for Humans? FABAD Journal of Pharmaceutical Sciences. 2016; 41:39-49.
24.    Zare K. Eidi A. Roghani M. Rohani AH. The Neuroprotective Potential of Sinapic Acid in the 6-Hydroxydopamine-Induced Hemi-Parkinsonian Rat. Metabolic Brain Disease. 2015; 30(1)
25.    Yoon BH. Jung JW. Lee JJ. Cho YW. Jang CG. Jin C et al. Anxiolytic- Like Effects of Sinapic Acid in Mice. Life Sciences. 2007; 81(3)
26.    Vineela S. Thakur SR. Sinapic Acid Ameliorates Acrylamide Induced Neurotoxicity through Inhibition of Oxidative Stress in Rats. Research Journal of Pharmacy and Technology. 2020; 13(12):6009-6016.
27.    Yun KJ. Koh DJ. Kim SH. Park SJ. Ryu JH. Kim DG et al. Anti-Inflammatory Effects of Sinapic Acid through the Suppression of Inducible Nitric Oxide Synthase, Cyclooxygase-2, and Proinflammatory Cytokines Expressions via Nuclear Factor-Kappa B Inactivation. Journal of Agriculture and Food Chemistry. 2008; 56(21):10265-10272.
28.    Nithya R. Subramanian S. Antioxidant Properties of Sinapic Acid: In Vitro and In Vivo Approach. Asian Journal of Pharmaceutical and Clinical Research. 2017; 10(6):255-262.
29.    Wang P. Liu C. Liu L. Zhang X. Ren B. Li B. The Antidepressant Like Effects of Estrogen-Mediated Ghrelin. Current Neuropharmacology. 2015; 13(4)
30.    Willner P. Muscat R. Papp M. Chronic Mild Stress-Induced Anhedonia: A Realistic Animal Model of Depression. Neuroscience & Biobehavioral Reviews. 1992; 16(4):525-534.
31.    Steru L. Chermat R. Thierry B. Simon P. The Tail Suspension Test: A New Method for Screening Antidepressants in Mice. Psychopharmacology (Berl). 1985; 85(3):367-370.
32.    Willner P. Towell A. Sampson D. Sophokleous S. Muscat R. Reduction of Sucrose Preference by Chronic Unpredictable Mild Stress, and Its Restoration by a Tricyclic Antidepressant. Psychopharmacology (Berl). 1987; 93(3)
33.    Dews PB. The Measurement of the Influence of Drugs on Voluntary Activity in Mice. British Journal of Pharmacology and Chemotherapy. 1953; 8(1)
34.    Bartos J. Pesez M. Colorimetric and Fluorimetric Determination of Steroids. In: Pure and Applied Chemistry. vol. 51. 1979; pp. 2157-69
35.    Charles M, McEwan J. MAO Activity in Rabbit Serum. In: Methods in Enzymology. Vol. 17 B. Academic Press, New York and London. 1977, pp. 692-8.
36.    Schurr A. Livne A. Differential Inhibition of Mitochondrial Monoamine Oxidase from Brain by Hashish Components. Biochemical Pharmacology. 1976; 25(10):1201-1203.
37.    Wills ED. Mechanisms of Lipid Peroxide Formation in Tissues. Role of Metals and Haematin Proteins in the Catalysis of the Oxidation Unsaturated Fatty Acids. Biochimica et Biophysica Acta. 1965;
38.    Jollow DJ. Mitchell JR. Zampaglione N. Gillette JR. Bromobenzene-Induced Liver Necrosis. Protective Role of Glutathione and Evidence for 3,4-Bromobenzene Oxide as the Hepatotoxic Metabolite. Pharmacology. 1974; 11(3)
39.    Claiborne A. Catalase activity. In: Handbook of Methods for Oxygen Radical Research. CRC Press, Florida. 1985; 1st ed: pp. 283-4
40.    Gornall AG, Bardawill CJ, David MM. Determination of Serum Proteins by Means of the Biuret Reaction. Journal of Biological Chemistry. 1949; 177(2):751-766.
41.    Green LC. Wagner DA. Glogowski J. Skipper PL. Wishnok JS. Tannenbaum SR. Analysis of Nitrate, Nitrite, and [15N] Nitrate in Biological Fluids. Analytical Biochemistry. 1982; 126(1):131-138.
42.    Willner P. The Chronic Mild Stress (CMS) Model of Depression: History, Evaluation and Usage. Neurobiology of Stress. 2017; 6:78-93.
43.    Liu MY. Yin CY. Zhu LJ. Zhu XH. Xu C. Luo CX et al. Sucrose Preference Test for Measurement of Stress-Induced Anhedonia in Mice. Nature Protocols. 2018; 13(7)
44.    Deng XY. Li HY. Chen JJ. Li RP. Qu R. Fu Q et al. Thymol Produces an Antidepressant-Like Effect in a Chronic Unpredictable Mild Stress Model of Depression in Mice. Behavioural Brain Research. 2015; 291:12-19.
45.    Meyer JH. Ginovart N. Boovariwala A. Sagrati S. Hussey D. Garcia A. Young T et al. Elevated Monoamine Oxidase Levels in the Brain: An Explanation for the Monoamine Imbalance of Major Depression. Archives of General Psychiatry. 2006 63(11):1209-1216.
46.    Liu J. Qiao W. Yang Y. Ren L. Sun Y. Wang S. Antidepressant-Like Effect of the Ethanolic Extract from Suanzaorenhehuan Formula in Mice Models of Depression. Journal of Ethnopharmacology. 2012; 141(1)
47.    Mukherjee J. Yang ZY. Monoamine Oxidase A Inhibition by Fluoxetine: An In Vitro and In Vivo study. Synapse. 1999; 31(4)<285::AID-SYN6>3.0.CO;2-5
48.    Mason BZ. Pariante CM. The Effects of Antidepressants on the Hypothalamic-Pituitary-Adrenal Axis. Drug News & Perspectives. 2006; 19(10):603-608.
49.    Jindal A. Mahesh R. Bhatt S. Etazolate Rescues Behavioral Deficits in Chronic Unpredictable Mild Stress Model: Modulation of Hypothalamic-Pituitary-Adrenal Axis Activity and Brain-Derived Neurotrophic Factor Level. Neurochemistry International. 2013; 63(5)
50.    Machado DG. Cunha MP. Neis VB. Balen GO. Colla A. Grando J et al. Fluoxetine Reverses Depressive-Like Behaviors and Increases Hippocampal Acetylcholinesterase Activity Induced by Olfactory Bulbectomy. Pharmacology Biochemistry and Behavior. 2012; 103(2)
51.    Maes M. Galecki P. Chang YS. Berk M. A Review on the Oxidative and NitrosativeStress (O & NS) Pathways in Major Depression and Their Possible Contribution to the (Neuro)Degenerative Processes in That Illness. Progress in Neuropsychopharmacology & Biological Psychiatry. 2011; 35(3):676-692.
52.    Lee CY. Cheng HM. Sim SM. Mulberry Leaves Protect Rat Tissues from Immobilization Stress-Induced Inflammation. Biofactors. 2007; 31(1):25-33.
53.    Bhatt S. Radhakrishnan M. Jindal A. Devadoss T. Dhar AK. Neuropharmacological Evaluation of a Novel 5-HT3 Receptor Antagonist (6g) on Chronic Unpredictable Mild Stress-Induced Changes in Behavioural and Brain Oxidative Stress Parameters in Mice. Indian Journal of Pharmacology. 2014; 46(2)
54.    Felger JC. Lotrich FE. Inflammatory Cytokines in Depression: Neurobiological Mechanisms and Therapeutic Implications. Neuroscience. 2013; 246:199-229.
55.    Amin SN. Hassan SS. Khashaba AS. Youakim MF. Latif NSA. Rashed LA et al. Hippocampal and Cerebellar Changes in Acute Restraint Stress and the Impact of Pretreatment with Ceftriaxone. Brain Sciences. 2020; 10(4)
56.    Harris MV. Cason Z. Benghuzzi H. Tucci M. Cytomorphological Assessment of Benign and Malignant Dense Hyperchromatic Groups in Cervico-vaginal Smears. Biomedical Sciences Instrumentation. 2000; 36:349-534.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available