Author(s): Fazil Ahmad, Krishna Mohan Surapaneni, Abeer Mohammed Al-Subaie, Balu Kamaraj

Email(s): , , ,

DOI: 10.52711/0974-360X.2023.00656   

Address: Fazil Ahmad1*, Krishna Mohan Surapaneni2, Abeer Mohammed Al-Subaie3, Balu Kamaraj4
1Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, P.O. Box 4030, Jubail, Saudi Arabia.
2Departments of Biochemistry, Molecular Virology, Medical Education, Research, Clinical Skills & Simulation, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai - 600 123.
3Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia.
4Department of Dental Education, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
*Corresponding Author

Published In:   Volume - 16,      Issue - 8,     Year - 2023

Introduction: Exploring medicinal plants for novel therapeutic strategies is the need of the day. This is because of drug resistance against most of the available drugs. Natural products serve as a safe and potential alternative. This review focuses on Quercus infectoria, a plant belonging to family-Fagaceae with potential therapeutic usage. The aim of this review is to explore the ethnopharmacological properties of Quercus infectoria in various diseases and to explore the mechanism of action responsible for a specific potential of Quercus infectoria such as anti-diabetic, antioxidant, anti-inflammatory etc. Methods: Historical data about the Quercus infectoria plant has been collected by virtue of systematic search and review through the unpublished, published resources, databases regionally and globally. Results: Quercus infectoria extracts and various pure compounds such as tannic acid, gallic acid, ellagic acid, methyl gallate have been reported to possess significant therapeutic potential against various diseases such as diabetes, cancer, cardiovascular disorders. There have been some reports on the molecular mechanism behind their medicinal value. Pure compounds/constituents of Quercus infectoria which are responsible for these therapeutic efficacies have been less explored. Conclusion: Quercus infectoria has shown activities against various ailments such as diabetes, cardiovascular disorders, antimicrobial activity, anti-inflammatory, anticancer etc. Moreover, when explored on the mechanistic aspect, it was found that it mediates its function by modulating various signaling/metabolic pathways such as AKT signaling, NF-?B and JAK/STAT pathways. However, more studies need to be focused on in vivo investigation of its medicinal importance in animal models along with pharmacokinetics, bioavailability and toxicity.

Cite this article:
Fazil Ahmad, Krishna Mohan Surapaneni, Abeer Mohammed Al-Subaie, Balu Kamaraj. Insight into Ethnopharmacology of Quercus Infectoria with the possible mechanism of action. Research Journal of Pharmacy and Technology. 2023; 16(8):3999-6. doi: 10.52711/0974-360X.2023.00656

Fazil Ahmad, Krishna Mohan Surapaneni, Abeer Mohammed Al-Subaie, Balu Kamaraj. Insight into Ethnopharmacology of Quercus Infectoria with the possible mechanism of action. Research Journal of Pharmacy and Technology. 2023; 16(8):3999-6. doi: 10.52711/0974-360X.2023.00656   Available on:

1.    Evans, W.C.Trease and Evans Pharmacognosy, New York. 2002;15th ed:pp.260
2.    Samuelson, G. Drugs of Natural Origin,5th ed.Swedish Pharmaceutical Press, Stockhlm.1992.
3.    Samuelsson, G.Drugs of natural origin.Stockholm, Sweden: Swedish Pharmaceuticals Press,1999:pp. 1208-1210.
4.    Townsend L, E.E.a.E.E.. Common Oak Galls. Department of Entomology, University of Kentucky, USA.1998. http:// www.uky. edu/ Ag/ Entomology/entfacts/trees/ef408.htm.
5.    Chatterjee, A., Pakrashi, S.C. The treatise on Indian medicinal plants. Publication and Information Directorate, CSIR, New Delhi.2005;pp. 37-39.
6.    Dar, M.S., Ikram, M., Fakouhi, T. Pharmacology of Quercus infectoria. J Pharm Sci.1976; 65(12), 1791-1794.
7.    Ikram, M., Nowshad, F. Constituents of Quercus infectoria. Planta Med. 1977;31(3), 286-287.
8.    Kaur, G., Hamid, H., Ali, A., Alam, M.S., Athar, M. Antiinflammatory evaluation of alcoholic extract of galls of Quercus infectoria. J Ethnopharmacol. 2004; 90(2-3), 285-292.
9.    Hwang, J.K., Kong, T.W., Baek, N.I., Pyun, Y.R. alpha-Glycosidase inhibitory activity of hexagalloylglucose from the galls of Quercus infectoria. Planta Med. 2000;66(3), 273-274.
10.    Khare, C.P. Encyclopedia of Indian medicinal plants. Springer-Verlag Berlin Heidelberg. 2004.
11.    Anonymous. The Unani Pharmacopoeia of India. CCRUM, New Delhi. 2007.
12.    Efe, R., Soykan, Curebal, I. , Sonmez S. Dede korkut monument oak (Quercus infectoria Olivier). Procedia Social and Behavioural Sciences. 2011; 19, 627-636.
13.    Kabeeruddin, M., Makhzanul, M. Idarae Kitab-us-Shifa. New Delhi, 2007; pp276.
14.    Nadkarni, A.K. Indian Materia Medica. . Mumbai: Popular Prakashan Pvt Ltd 302, 2010; pp.1041-1043.
15.    Qasmi, I.A. Kitabul Mufradat.Universal Book House, Aligarh,India. 2001.
16.    Kabeeruddin, M.Il mul Advia Nafeesi. Ejaz Publishing House, New Delhi. 2007.
17.    Beral, V., Million Women Study, C., Bull, D., Green, J., Reeves, G. Ovarian cancer and hormone replacement therapy in the Million Women Study. Lancet.2007;369(9574), 1703-1710.
18.    Vermani A, N.P., Chauhan A. Physicochemical analysis of ash of some medicinal plants growing in Uttarakhand, India. Nature and Sci. 2010; 8(6), 88–91. › marsnsj080610.
19.    Hapidin, H., Rozelan, D., Abdullah, H., Wan Hanaffi, W.N., Soelaiman, I.N. Quercus infectoria Gall Extract Enhanced the Proliferation and Activity of Human Fetal Osteoblast Cell Line (hFOB 1.19). Malays J Med Sci. 2015; 22(1), 12-22.
20.    Breidenstein, E.B., de la Fuente-Nunez, C., Hancock, R.E. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011; 19(8), 419-426.
21.    Kong et al., Pseudomonas aeruginosa AmpR is a global transcriptional factor that regulates expression of AmpC and PoxB beta-lactamases, proteases, quorum sensing, and other virulence factors. Antimicrob Agents Chemother. 2005; 49(11), 4567-4575.
22.    Gambello, M.J., Kaye, S., Iglewski, B.H. LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect Immun. 1993; 61(4), 1180-1184.
23.    Oliver, A., Mulet, X., Lopez-Causape, C., Juan, C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat. 2015; 21-22, 41-59.
24.    Sifri, C.D. Healthcare epidemiology: quorum sensing: bacteria talk sense. Clin Infect Dis. 2008; 47(8), 1070-1076.
25.    Mohabi, S., Kalantar-Neyestanaki, D., Mansouri, S. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by Quercus infectoria gall extracts. Iran J Microbiol. 2017; 9(1), 26-32. PMID: 28775820.
26.    Sharma, J., Sharma, M., Ray, P. Detection of TEM & SHV genes in Escherichia coli & Klebsiella pneumoniae isolates in a tertiary care hospital from India. Indian J Med Res. 2010;132, 332-336. PMID: 20847381.
27.    Yao, J., Moellering, R. Antibacterial agents. In: Manual of clinical microbiology. ASM Publisher,Washington DC. 1995.
28.    Gupta et al., Cranberry products inhibits adherence of P-fimbriatedEsherichia coli to primary cultured bladder and vaginal epithelial cells. .J Urol. 2013; 177, 2357-2360.
29.    Biedenbach et al., Antimicrobial susceptibility of Gram-positive bacterial isolates from the Asia-Pacific region and an in vitro evaluation of the bactericidal activity of daptomycin, vancomycin, and teicoplanin: a SENTRY Program Report (2003-2004). Int J Antimicrob Agents. 2007; 30(2), 143-149.
30.    Emaneini, M., Aligholi, M., Hashemi, F.B., Jabalameli, F., Shahsavan, S., Dabiri, H., Jonaidi, N., Dahi, K. Isolation of vancomycin-resistant Staphylococcus aureus in a teaching hospital in Tehran. J Hosp Infect. 2007; 66(1), 92-93.
31.    Ferrara, A.M. Treatment of hospital-acquired pneumonia caused by methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents. 2007; 30(1), 19-24.
32.    Kaur, G., Athar, M., Alam, M.S. Quercus infectoria galls possess antioxidant activity and abrogates oxidative stress-induced functional alterations in murine macrophages. Chem Biol Interact. 2008; 171(3), 272-282.
33.    Giesbrecht, P., Kersten, T., Maidhof, H., Wecke, J. Staphylococcal cell wall: morphogenesis and fatal variations in the presence of penicillin. Microbiol Mol Biol Rev. 1998; 62(4), 1371-1414. PMID: 9841676; PMCID: PMC98950.
34.    Mustafa, H., Ismail, N., Wahab, W. Anti-microbial Activity of Aqueous Quercus infectoria Gall Extract against Pathogenic Leptospira. Malays J Med Sci. 2018; 25(4), 42-50. PMID: 30914846. 
35.    Gholamhoseinian, A., Shahouzehi, B., Joukar, S., Iranpoor, M. Effect of Quercus infectoria and Rosa damascena on lipid profile and atherosclerotic plaque formation in rabbit model of hyperlipidemia. Pak J Biol Sci. 2012; 15(1), 27-33.
36.    Joukar, S., Askarzadeh, M., Shahouzehi, B., Najafipour, H., Fathpour, H. Assessment of Safety and Therapeutic Efficacy of Rosa damascena L. and Quercus infectoria on Cardiovascular Performance of Normal and Hyperlipidemic Rabbits: Physiologically Based Approach. J Toxicol. 2013; 769143.
37.    Baretic, M. Targets for medical therapy in obesity. Dig Dis. 2012; 30(2), 168-172.
38.    Gholamhoseinian, A., Shahouzehi, B., Sharifi-Far,  F. Inhibitory activity of some plant methanol extracts on 3-Hydroxy3-Methylglutaryl coenzyme a reductase. International Journal of Pharmacology. 2010; 6, 705–711.
39.    Chabner, B., Knollman,B. , Goodman & Gilmans. T. The Pharmacological Basis of Theraputics, twelveth ed. McGraw-Hill, New York, NY, USA. 2011.
40.    Basri, D.F., Fan, S. H. The potential of aqueous and acetone extracts of galls of Quercus infectoria as antibacterial agents. Indian Journal of Pharmacology. 2005; 37, 26–29.
41.    Kornman, K.S., Robertson, P.B. Clinical and microbiological evaluation of therapy for juvenile periodontitis. J Periodontol. 56(8), 443-446.
42.    Marsh, P.D., 1992. Microbiological aspects of the chemical control of plaque and gingivitis. J Dent Res. 1985; 71(7), 1431-1438.
43.    Slots, J., Jorgensen, M.G. Effective, safe, practical and affordable periodontal antimicrobial therapy: where are we going, and are we there yet? Periodontology. 2002; 28, 298–312.
44.    Basri, D.F., Tan, L.S., Shafiei, Z., Zin, N.M. In vitro Antibacterial Activity of Galls of Quercus infectoria Olivier against Oral Pathogens. Evid Based Complement Alternat Med. 2012; 632796.
45.    Saini, R., Patil, S.M. Anti-diabetic activity of roots of Quercus infectoria Olivier in Alloxan induced diabetic rats. . IJSPR. 2012; 5, 1318-1321.
46.    Burke, J.P., Williams, K., Narayan, K.M., Leibson, C., Haffner, S.M., Stern, M.P. A population perspective on diabetes prevention: whom should we target for preventing weight gain? Diabetes Care. 2003; 26(7), 1999-2004.
47.    Abdella, N.A., Khogali, M.M., Salman, A.D., Ghuneimi, S.A., Bajaj, J.S. Pattern of non-insulin dependent diabetes mellitus in Kuwait. Diabetes Res Clin Pract. 2016; 29(2),129-136.
48.    Bajaj J. S. , M., R. Diabetes in tropics and developing countries. IDF Bull. 1995; 38, 5-6.
49.    David, M.N. The pathophysiology of diabetic complications: How much does the glucose hypothesis explain? Ann. Intern. Med. 1996; 174, 286-289.
50.    Anonymous. The Wealth of India: A Dictionary of Indian Raw Materials and Industrial Products. Ind Med Gaz. 1949;  84(10): 476–477. PMCID: PMC5189551
51.    Chopra, R.N., Nayar, S.I., Chopra, I.C. Glossary of Indian Medicinal Plant. . Council of Scientific and Industrial Research, India,208.1956.
52.    Lefkowitz, D.L., Gelderman, M.P., Fuhrmann, S.R., Graham, S., Starnes, J.D., 3rd, Lefkowitz, S.S., Bollen, A., Moguilevsky, N. Neutrophilic myeloperoxidase-macrophage interactions perpetuate chronic inflammation associated with experimental arthritis. Clin Immunol. 1999; 91(2), 145-155.
53.    Harris, S.G., Padilla, J., Koumas, L., Ray, D., Phipps, R.P. Prostaglandins as modulators of immunity. Trends Immunol. 2002; 23(3), 144-150.
54.    MacMicking, J., Xie, Q.W., Nathan, C. Nitric oxide and macrophage function. Annu Rev Immunol.1997;15, 323-350.
55.    Moncada, S., Palmer, R.M., Higgs, E.A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991; 43(2), 109-142. PMID: 1852778.
56.    Yoshikawa, T., Naito, Y. The role of neutrophils and inflammation in gastric mucosal injury. Free Radic Res. 2000; 33(6), 785-794.
57.    Bourke, E., Moynagh, P.N. Antiinflammatory effects of glucocorticoids in brain cells, independent of NF-kappa B. J Immunol. 1999;163(4), 2113-2119.
58.    Chokpaisarn, J., Urao, N., Voravuthikunchai, S.P., Koh, T.J. Quercus infectoria inhibits Set7/NF-kappaB inflammatory pathway in macrophages exposed to a diabetic environment. Cytokine. 2017b; 94, 29-36.
59.    Park, I.S., Kiyomoto, H., Abboud, S.L., Abboud, H.E. Expression of transforming growth factor-beta and type IV collagen in early streptozotocin-induced diabetes. Diabetes. 1997; 46(3), 473-480.
60.    Kim, Y., Kleppel, M.M., Butkowski, R., Mauer, S.M., Wieslander, J., Michael, A.F. Differential expression of basement membrane collagen chains in diabetic nephropathy. Am J Pathol. 1991; 138(2), 413-420. PMID: 1992766; PMCID: PMC1886199.
61.    Steffes, M.W., Osterby, R., Chavers, B., Mauer, S.M. Mesangial expansion as a central mechanism for loss of kidney function in diabetic patients. Diabetes. 1989; 38(9), 1077-1081.
62.    Ahad, A., Mujeeb, M., Ahsan, H.,  Siddiqui, W.S. Nephroprotective potential of Quercus infectoria galls against experimentally induced diabetic nephropathy in rats through inhibition of renal oxidative stress and TGF-β. Animal cells and systems. 2016; 20(4), 193–202.
63.    Halliwell, B., Gutteridge, J.M., Cross, C.E. Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med. 1992; 119(6), 598-620.
64.    Hogg, N. Free radicals in disease. Semin Reprod Endocrinol. 1998; 16(4), 241-248.
65.    Altman et al.,, G. tert.-butyl hydroperoxide-mediated DNA base damage in cultured mammalian cells. Mutat Res. 1994; 306(1) ,35-44.
66.    Kim, P.J., Steinberg, J.S. Wound care: biofilm and its impact on the latest treatment modalities for ulcerations of the diabetic foot. Semin Vasc Surg. 2012; 25(2), 70-74.
67.    Chokpaisarn, J., Chusri, S., Amnuaikit, T., Udomuksorn, W., Voravuthikunchai, S.P. Potential wound healing activity of Quercus infectoria formulation in diabetic rats. PeerJ. 2017a; 5, e3608.
68.    Voravuthikunchai, S.P., Suwalak, S. Antibacterial activities of semipurified fractions of Quercus infectoria against enterohemorrhagic Escherichia coli O157:H7 and its verocytotoxin production. J Food Prot. 2008; 71(6), 1223-1227.
69.    Giftson Senapathy, J., Jayanthi, S., Viswanathan, P., Umadevi, P., Nalini, N. Effect of gallic acid on xenobiotic metabolizing enzymes in 1,2-dimethyl hydrazine induced colon carcinogenesis in Wistar rats--a chemopreventive approach. Food Chem Toxicol. 2011; 49(4), 887-892.
70.    Chandramohan Reddy, T., Bharat Reddy, D., Aparna, A., Arunasree, K.M., Gupta, G., Achari, C., Reddy, G.V et al., Anti-leukemic effects of gallic acid on human leukemia K562 cells: downregulation of COX-2, inhibition of BCR/ABL kinase and NF-kappaB inactivation. Toxicol In Vitro. 2012; 26(3), 396-405.
71.    Chen, H.S., Bai, M.H., Zhang, T., Li, G.D., Liu, M. Ellagic acid induces cell cycle arrest and apoptosis through TGF-beta/Smad3 signaling pathway in human breast cancer MCF-7 cells. Int J Oncol. 2015; 46(4), 1730-1738. 
72.    Afsar, T., Trembley, J.H., Salomon, C.E., Razak, S., Khan, M.R., Ahmed, K. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways. Sci Rep. 2016; 6, 23077.
73.    Lee Townsend, Extension Entomologist, and Eileen Eliason.. Common Oak Galls. Department of Entomology, University of Kentucky, USA. 1998.
74.    Pei, J.S., Liu, C.C., Hsu, Y.N., Lin, L.L., Wang, S.C., Chung, J.G., Bau, D.T., Lin, S.S. Amentoflavone induces cell-cycle arrest and apoptosis in MCF-7 human breast cancer cells via mitochondria-dependent pathway. In Vivo. 2012; 26(6), 963-970. PMID: 23160679.
75.    Deiab et al., 1,2,3,4,6-Penta-O-galloylglucose within Galla Chinensis Inhibits Human LDH-A and Attenuates Cell Proliferation in MDA-MB-231 Breast Cancer Cells. Evid Based Complement Alternat Med. 2015; 276946.
76.    Iminjan, M., Amat, N., Li, X.H., Upur, H., Ahmat, D., He, B. Investigation into the toxicity of traditional Uyghur medicine Quercus infectoria galls water extract. PLoS One. 2014; 9(3), e90756.
77.    Hamid, H., Kaur, G., Abdullah, S.T., Ali, M., Athar, M., Alam, M.S. Two New Compounds from the Galls of Quercus infectoria. with Nitric Oxide and Superoxide Inhibiting Ability. Pharm Biol. 2005; 43(4), 317-323.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available