Author(s): Nouran AbdelKader, Amal Abo Kamer, Engy Elekhnawy, Mona Arafa, Ebtessam A Essa, Gamal M El Maghraby


DOI: 10.52711/0974-360X.2023.00645   

Address: Nouran AbdelKader1*, Amal Abo Kamer2, Engy Elekhnawy2, Mona Arafa1, Ebtessam A Essa1, Gamal M El Maghraby1
1Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Tanta, Egypt.
2Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
*Corresponding Author

Published In:   Volume - 16,      Issue - 8,     Year - 2023

The aim of this work was to improve dissolution rate and antibacterial activity of cefpodoxime proxetil (CP) by Pluronic PE 6800 (Poloxamer 188) as eutectic forming hydrophilic polymer. CP was incorporated in the polymer by melt granulation technique. CP was mixed with melted polymer before addition of Avicel, in absence and presence of HPMC E6, with mixing to provide flowable particles. The formulations were characterized using thermal analysis and Fourier transform infrared spectroscopy (FTIR) in addition to dissolution studies. The antibacterial activity of CP against Proteus mirabilis was also explored. FTIR suggested possible hydrogen bonding between CP and polymers. All formulations improved CP dissolution compared to unprocessed CP. This could be attributed to the formation of eutectic species, as reflected by thermal analysis as new endothermic peak at Tm value of 40°C was detected in thermograms of all tested formulations. Microbiological investigations indicated that the optimized formulation offered advantages over pure CP with reduced minimum inhibitory concentration. Additionally, formulated CP decreased the biofilm formation ability among the tested P. mirabilis clinical isolates relative to unprocessed CP. The study introduced melt granulation of CP with poloxamer 188 as a promising tool for enhanced dissolution and augmented activity against Proteus mirabilis with capacity to minimize the biofilm formation.

Cite this article:
Nouran AbdelKader, Amal Abo Kamer, Engy Elekhnawy, Mona Arafa, Ebtessam A Essa, Gamal M El Maghraby. Melt granulation for Enhanced Dissolution Rate and Antimicrobial activity of Cefpodoxime Proxetil. Research Journal of Pharmacy and Technology. 2023; 16(8):3921-8. doi: 10.52711/0974-360X.2023.00645

Nouran AbdelKader, Amal Abo Kamer, Engy Elekhnawy, Mona Arafa, Ebtessam A Essa, Gamal M El Maghraby. Melt granulation for Enhanced Dissolution Rate and Antimicrobial activity of Cefpodoxime Proxetil. Research Journal of Pharmacy and Technology. 2023; 16(8):3921-8. doi: 10.52711/0974-360X.2023.00645   Available on:

1.    Kakumanu VK et al. Development and validation of isomer specific RP-HPLC method for quantification of cefpodoxime proxetil. Journal of Chromatography B. 2006;835(1-2):16-20.
2.    Kumar N et al. Formulation and characterization of dispersible tablets of cefpodoxime proxetil: A cephalosporin antibiotic. Research Journal of Pharmacy and Technology. 2021;1(1):1.
3.    Crauste-Manciet et al. Cefpodoxime proxetil esterase activity in rabbit small intestine: a role in the partial cefpodoxime absorption. International Journal of Pharmaceutics. 1997;149(2):241-9.
4.    Amidon et al. A theoretical basis for a biopharmaceutical drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharmaceutical  Research. 1995; 12(3): 413-20.
5.    Pathan D et al. Formulation and Evaluation of Floating Drug Delivery System of Cefpodoxime Proxetil. Research Journal of Pharmacy and Technology. 2009;2(4):812-5.
6.    Miyan SS et al. Formulation and evaluation of cefpodoxime proxetil matrix tablets by using different polymers. Research Journal of Pharmacy and Technology. 2011;4(7):1060-8.
7.    Hughes et al. The effects of gastric pH and food on the pharmacokinetics of a new oral cephalosporin, cefpodoxime proxetil. Clinical Pharmacology & Therapeutics. 1989; 46(6): 674-85.
8.    Hamaura T et al. Gel formation of cefpodoxime proxetil. STP Pharma Sciences. 1995;5(4):324-31.
9.    Kakumanu VK et al. Investigation of factors responsible for low oral bioavailability of cefpodoxime proxetil. International Journal of Pharmaceutics. 2006;317(2):155-60.
10.    Gao Y et al. Physicochemical and pharmacokinetic characterization of a spray-dried cefpodoxime proxetil nanosuspension. Chemical and Pharmaceutical Bulletin. 2010; 58(7): 912-7.
11.    Gundogdu E et al. Comparison of cefpodoxime proxetil release and antimicrobial activity from tablet formulations: complexation with hydroxypropyl-β-cyclodextrin in the presence of water soluble polymer. Drug Development and Industrial Pharmacy. 2012; 38(6): 689-96.
12.    Date AA, Nagarsenker M. Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for cefpodoxime proxetil. International Journal of Pharmaceutics. 2007; 329(1-2):166-72.
13.    Nimbalkar U et al. Solid lipid nanoparticles for enhancement of oral bioavilability of cefpodoxime proxetil. International Journal of Pharmaceutical Sciences and Research. 2011; 2(11):2974.
14.    Bazzo GC et al. Eutectic mixtures as an approach to enhance solubility, dissolution rate and oral bioavailability of poorly water-soluble drugs. International Journal of Pharmaceutics. 2020; 588: 119741.
15.    Punitha S et al. Solid dispersions: a review. Research Journal of Pharmacy and Technology. 2011; 4(3): 331-4.
16.    Srikanth M et al. Studies on the effect of hydrophilic carriers in the dissolution rate enhancement of poorly soluble drug, bicalutamide. Research Journal of Pharmacy and Technology. 2010; 3(2): 592-5.
17.    Yan et al. The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. Nanomedicine: Nanotechnology, Biology and Medicine. 2010; 6(1): 170-8.
18.    Zhang et al. Post-insertion of poloxamer 188 strengthened liposomal membrane and reduced drug irritancy and in vivo precipitation, superior to PEGylation. Journal of Controlled Release. 2015; 203:161-9.
19.    Vasim SM, Thube R. Solubility enhancement of Aceclofenac by hot melt solid dispersion technique. Research J Pharm and Tech. 2011;4(8).
20.    Hajare A et al. Characterization of melt (fusion) solid dispersions of nifedipine. Research Journal of Pharmacy and Technology. 2008; 1(3): 230-4.
21.    Moore J, Flanner H. Mathematical comparison of dissolution profiles. Pharmaceutical Technology. 1996;20(6):64-74.
22.    MacFaddin J. Biochemical Tests for Identification of Medical Bacteria, Williams and Wilkins. Philadelphia, PA. 2000;113.
23.    Wayne P. Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing. Published Online 2021.
24.    Yang et al. A novel chimeric lysin with robust antibacterial activity against planktonic and biofilm methicillin-resistant Staphylococcus aureus. Scientific Reports. 2017;7(1):1-13.
25.    Nithyaet al. C et al. Marine bacterial isolates inhibit biofilm formation and disrupt mature biofilms of Pseudomonas aeruginosa PAO1. Applied Microbiology and Biotechnology. 2010; 88(1):341-58.
26.    Khan F et al. Enhancement of bioavailability of cefpodoxime proxetil using different polymeric microparticles. AAPS Pharm Sci Tech. 2010;11(3):1368-75.
27.    Rao et al. Development and in-vitro evaluation of cefpodoxime proxetil gastro-retentive floating tablets. International Journal of Applied Pharmaceutical Sciences and Research. 2016;1(01):31-41.
28.    Essa et al. Fast disintegrating tablets of amiodarone for intra-oral administration. Journal of Applied Pharmaceutical Science. 2017; 7(1): 64-72.
29.    Reddy KA, Karpagam S. Cellulose orodispersible films of donepezil: Film characterization and drug release. Pharmaceutical Chemistry Journal. 2017;51(8):707-15.
30.    Patil SH, Talele GS. Natural gum as mucoadhesive controlled release carriers: evaluation of Cefpodoxime Proxetil by D-Optimal design technique. Drug Delivery. 2014; 21(2):118-29.
31.    El Maghraby GM, Alomrani AH. Effect of binary and ternary solid dispersions on the in vitro dissolution and in situ rabbit intestinal absorption of gliclazide. Pak J Pharm Sci. 2011; 24(4): 459-68.
32.    Barboza et al. Differential scanning calorimetry as a screening technique in compatibility studies of acyclovir extended release formulations. Pharmaceutical Chemistry Journal. 2009; 43(6): 363-8.
33.    Barakat N et al. Controlled-release carbamazepine matrix granules and tablets comprising lipophilic and hydrophilic components. Drug Delivery. 2009;16(1):57-65.
34.    Alshaikh R et al. Eutexia for enhanced dissolution rate and anti-inflammatory activity of nonsteroidal anti-inflammatory agents: caffeine as a melting point modulator. International Journal of Pharmaceutics. 2019; 563: 395-405.
35.    Arafa et al. Co-processing of Atorvastatin and Ezetimibe for Enhanced Dissolution Rate: In Vitro and In Vivo Correlation. AAPS PharmSciTech. 2021;22(2):1-11.
36.    Saritha A, Praveenachary A. Development and Characterization of Poloxamer Solid Dispersions of Cefuroxime Axetil. Research Journal of Pharmacy and Technology. 2015;8(4):360.
37.    Khan K. The concept of dissolution efficiency. Journal of pharmacy and pharmacology. 1975;27(1):48-9.
38.    Duraivel et al. Enhancement of dissolution rate of cefpodoxime proxetil by using solid dispersion and cogrinding approaches. Research Journal of Pharmacy and Technology. 2012; 5(12): 1552-62.
39.    Essa EA, Dwaikat M. Enhancement of Simvastatin dissolution by surface solid dispersion: effect of carriers and wetting agents. j app pharm sci. Published Online. 2015:46-53.
40.    Chaturvedi et al. Contribution of crystal lattice energy on the dissolution behavior of eutectic solid dispersions. ACS Omega. 2020; 5(17): 9690-701.
41.    Tajarobi, et al. The influence of crystallization inhibition of HPMC and HPMCAS on model substance dissolution and release in swellable matrix tablets. Eur J Pharm Biopharm. 2011; 78(1): 125-33.
42.    Suriyaprakash T et al. Design and Development of Taste Masked Cefpodoxime Dispersible Tablets. Research Journal of Pharmacy and Technology. 2017; 10(1):239.
43.    Wasfi et al. Proteus mirabilis biofilm: development and therapeutic strategies. Frontiers in Cellular and Infection Microbiology. 2020;10:414.
44.    Khayyat et al. Not only antimicrobial: Metronidazole Mitigates the virulence of Proteus mirabilis isolated from macerated diabetic foot ulcer. Applied Sciences. 2021;11(15):6847.
45.    Elekhnawy et al. An investigation of the impact of triclosan adaptation on Proteus mirabilis clinical isolates from an Egyptian university hospital. Brazilian Journal of Microbiology. 2021; 52(2): 927-37.
46.    Peterson E, Kaur P. Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Frontiers in Microbiology. 2018; 9:2928.
47.    Cassir N et al. A new strategy to fight antimicrobial resistance: the revival of old antibiotics. Front Microbiol. 2014; 5.
48.    Kowalska-Krochmal B, Dudek-Wicher R. The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens. 2021; 10(2): 165.
49.    Elekhnawy et al. Histological assessment, anti-quorum sensing, and anti-biofilm activities of Dioonspinulosum extract: In vitro and in vivo approach. Scientific Reports. 2022; 12(1):1-15.
50.    Selvaraj et al. Antibiofilm and antivirulence efficacy of myrtenol enhances the antibiotic susceptibility of Acinetobacter baumannii. Scientific Reports. 2020; 10(1):1-14.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available