Author(s): R. B. Shinde, A. H. Hosmani, M. A. Shende, R. J. Jarag, Y. S. Thorat


DOI: 10.52711/0974-360X.2023.00642   

Address: R. B. Shinde1*, A. H. Hosmani1, M. A. Shende1, R. J. Jarag2, Y. S. Thorat3
1Government College of Pharmacy, Karad. 415124.
2BVP's College of Pharmacy, Kolhapur. 416013.
3DSTSM's College of Pharmacy, Solapur. 413004.
*Corresponding Author

Published In:   Volume - 16,      Issue - 8,     Year - 2023

Nevirapine-loaded solid lipid Nanoparticles (SLNs) were manufactured using lipid and emulsifying agent by hot homogenization method. The goal of research was to formulating a SLN system to target the HIV reservoir which is mostly found in the lymphatic system and to conquer the obstacle of drug itself. Also, nearly 50% of antiviral drugs fall within BCS class 2, which have low solubility. 44% antiviral drugs belongs to BCS class 3 have inadequate permeability and 6% belongs to class 4 with inadequate solubility and inadequate permeability. Depending on the NVP solubility and stable formulation, stearic acid as a lipid and poloxamer 188 and tween 80 as an emulsifying agent were chosen and SLNs were manufactured with the help of hot homogenization method. Optimization of independent variables such as lipid concentration, emulsifying agent concentration and no. homogenization cycle was carried. The effect of independent variables on the dependent variables i.e. particle size and entrapment efficiency was studied. Optimized formulation which was lyophilized (L-SLN) and this L-SLN additionally characterized using DSC, SEM and XRD analysis. Also, in-vitro drug release of optimized batch studied in 0.04 M Sodium phosphate buffer pH 6.8 containing 2% SLS, demonstrated 41.83% release at the end of 24th hr. Absence of low intensity in XRD indicated the presence of amorphous SLNs. SEM showed the morphology of SLNs. No prominent changes observed in the accelerated stability studies.

Cite this article:
R. B. Shinde, A. H. Hosmani, M. A. Shende, R. J. Jarag, Y. S. Thorat. Preparation, statistical optimization, in-vitro evaluation and characterization of solid lipid nanoparticles of an anti-retroviral drug Nevirapine. Research Journal of Pharmacy and Technology. 2023; 16(8):3899-8. doi: 10.52711/0974-360X.2023.00642

R. B. Shinde, A. H. Hosmani, M. A. Shende, R. J. Jarag, Y. S. Thorat. Preparation, statistical optimization, in-vitro evaluation and characterization of solid lipid nanoparticles of an anti-retroviral drug Nevirapine. Research Journal of Pharmacy and Technology. 2023; 16(8):3899-8. doi: 10.52711/0974-360X.2023.00642   Available on:

1.    Chen Ran. Antiviral Drug Delivery System for Enhanced Bioactivity, Better Metabolism and Pharmacokinetic Characteristics. International Journal of Nanomedicine. 2021; 16; 4959-4984.
2.    Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012; 2012:195727.
3.    Ku MS. Use of the Biopharmaceutical Classification System in early drug development. AAPS J. 2008; 10(1):208-12.
4.    Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005; 22(1):11-23.
5.    Deeks, S Overbaugh, J Phillips. HIV infection. Nat Rev Dis Primers. 2015; 15035.
6.    Scholz, Erin M B, Angela D M Kashuba. The Lymph Node Reservoir: Physiology, HIV Infection, and Antiretroviral Therapy. Clinical Pharmacology and Therapeutics. 2021; 109(4):918-927.
7.    Kushwaha AK, Vuddanda PR, Karunanidhi P, Singh SK, Singh S. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability. Biomed Res Int. 2013; 2013:584549.
8.    Shah MK, Madan P, Lin S. Preparation, in vitro evaluation and statistical optimization of carvedilol-loaded solid lipid nanoparticles for lymphatic absorption via oral administration. Pharm Dev Technol. 2014; 19(4):475-85.
9.    National Center for Biotechnology Information. PubChem Compound Summary for CID 4463, Nevirapine. 2022; PubChem,
10.    Shah B, Khunt D, Bhatt H, Misra M, Padh H. Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: Effect on formulation and characterization parameters. Eur J Pharm Sci. 2015; 12; 78:54-66.
11.    Bhalekar M, Upadhaya P, Madgulkar A. Formulation and characterization of solid lipid nanoparticles for an anti-retroviral drug darunavir. Appl Nanosci 7.2017; 47-57.
12.    Venkateswarlu, Kambham. Fabrication of Extended Release Tablets of Pramipexole: In-vitro Studies. Pharmaceutical Methods. 2017; 8:115-120.
13.    R Shegokar, K K Singh, R H Müller. Production and stability of stavudine solid lipid nanoparticles—from lab to industrial scale. International Journal of Pharmaceutics. 2011; 416(2): 461-470.
14.    Kushwaha, Anand Kumar. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability. BioMed Research International. 2013; 584549.
15.    Colin W Pouton. Formulation of poorly water-soluble drugs for oral administration: Physicochemical and physiological issues and the lipid formulation classification system. European Journal of Pharmaceutical Sciences. 2006; 29(3, 4):278-287.
16.    W Pouton, C J H Porter. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Advanced Drug Delivery Reviews. 2008; 60(9): 625–637.
17.    Shah M, Pathak K. Development and statistical optimization of solid lipid nanoparticles of simvastatin by using 2 3 full-factorial design. AAPS Pharm Sci Tech. 2010; 78:1–8.
18.    Yang Y, Chung T, Bai X, Chan W. Effect of preparation conditions on morphology and release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion method. Chem Eng Sci. 2000; 55:2223–2236.
19.    Helgason, Thrandur and Awad, Tarek and Kristbergsson, Kristberg and Mcclements, David and Weiss, Jochen. Effect of Surfactant Surface Coverage on Formation of Solid Lipid Nanoparticles (SLN). Journal of Colloid and Interface Science. 2009; 334:75-81.
20.    Üner, Melike and Wissing, SA and Yener, Gulgun and Müller R. Influence of surfactants on the physical stability of Solid Lipid Nanoparticle (SLN) formulations. Die Pharmazie. 2004; 59:331-2.
21.    Manjunath, Kopparam and Venkateswarlu, Vobalaboina and Hussain. Preparation and characterization of nitrendipine solid lipid nanoparticles. Die Pharmazie. 2011; 66:178-86.
22.    Ekambaram P, Hasan Sathali A Abdul. Formulation and evaluation of solid lipid nanoparticles of ramipril. Journal of Young Pharmacists: JYP. 2011; 3(3): 216-20.
23.    Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009; 71(4):349-58.
24.    A Kovacevic, S Savic, G Vuleta, R H Müller, C M Keck. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure. International Journal of Pharmaceutics. 2011; 406(1-2):163-172.
25.    V Venkateswarlu, K. Manjunath. Preparation, characterization and in-vitro release kinetics of clozapine solid lipid nanoparticles. Journal of Controlled Release. 2004; 95(3):627-638.
26.    C Carbone, B Tomasello, B Ruozi, M Renis, G Puglisi. Preparation and optimization of PIT solid lipid nanoparticles via statistical factorial design. European Journal of Medicinal Chemistry. 2012; 49:110-7.
27.    Mauludin, Rachmat and Müller, Rainer. Preparation and storage stability of rutin nanosuspensions. Journal of Pharmaceutical Investigation. 2013; 43. 10.1007/s40005-013-0084-1.
28.    Obeida, W M Schwabe, Muller R H. Preservation of nanostructured lipid carriers (NLC). Eur. J. Pharm. Biopharm. 2010; 76:56-67.
29.    Almeida, Ellen and Costa, Adjani and Seraphina, Mariam and Rossetti, Fabio and Machete, Juliana and Sacramento, victor Hugo and Nuns, Rogerian and Valerio, Mario and Araujo, Adriano and Lira, Ana. Preparation and characterization of chloroaluminum phthalocyanine-loaded solid lipid nanoparticles by thermal analysis and powder X-ray diffraction techniques. Journal of Thermal Analysis and Calorimetry. 2012; 108; 191-196.
30.    Raju, Anju et al. Preparation and characterization of nevirapine oral nanosuspensions Indian Journal of Pharmaceutical Sciences. 2014; 76(1):62-71.
31.    Schubert M A, C Müller-Goymann. Characterization of surface-modified solid lipid nanoparticles (SLN): influence of lecithin and nonionic emulsifier. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik. 2005; 61(1-2):77-86.
32.    Zhan J. Q, Liu J, Jasti B R. Preparation and characterization of solid lipid nanoparticles containing silibinin. Drug Delivery. 2007; 14(6):381–387.
33.    Preethi Gopalpura Bellaiah, N S Hagalavadi, R. K. Madalli. 23 Factorial Design: An Approach for Formulation of Solid Lipid Nanoparticles of Etravirine for Oral Administration. Indian J Pharm Sci. 2022; 84(3):712-722.
34.    Parvez S, Yadagiri G, Gedda M R. Modified solid lipid nanoparticles encapsulated with Amphotericin B and Paromomycin: an effective oral combination against experimental murine visceral leishmaniasis. Sci Rep. 2020; 10:12243.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available