Author(s): Hoang Thanh Chi, Vo ngoc Tram, Nguyen Trung Quan, Bui Thi Kim Ly


DOI: 10.52711/0974-360X.2023.00631   

Address: Hoang Thanh Chi1, Vo ngoc Tram2, Nguyen Trung Quan2, Bui Thi Kim Ly1*
1Department of Medicine and Pharmacy, Thu Dau Mot University, Binh Duong Province, Vietnam.
2Faculty of Biology and Biotechnology, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam.
*Corresponding Author

Published In:   Volume - 16,      Issue - 8,     Year - 2023

Artemisia vulgaris L. has a long history of use in traditional medicine for the treatment of a wide range of ailments. Advancements in science and technology established scientific evidence for this medicinal plant. Recent studies have shown that A. vulgaris inhibits the growth of numerous cancer cell lines, including MCF-7, HepG2, Hela, and K-562. To access the potential anti-leukemia activity of A. vulgaris crude methanol extract (MetAV) on the ETV6-NTRK3-carrying cells, the IMS-M2, MO-91, and BaF3-CFS cell lines were co-cultured with MetAV for 48 h before being stained with Trypan Blue to calculate the percentage of viable cells. With IC50 values of 26.98 ± 2.25; 21.85 ± 0.92; and 18.70 ± 1.70 µg/ml for IMS-M2, MO-91, and BaF3-CFS, respectively, the results indicated that MetAV had a significant effect on the examined cells.

Cite this article:
Hoang Thanh Chi, Vo ngoc Tram, Nguyen Trung Quan, Bui Thi Kim Ly. The growth of ETV6-NTRK3 harbouring cells was inhibited by Artemisia vulgaris L. crude extract. Research Journal of Pharmacy and Technology. 2023; 16(8):3825-9. doi: 10.52711/0974-360X.2023.00631

Hoang Thanh Chi, Vo ngoc Tram, Nguyen Trung Quan, Bui Thi Kim Ly. The growth of ETV6-NTRK3 harbouring cells was inhibited by Artemisia vulgaris L. crude extract. Research Journal of Pharmacy and Technology. 2023; 16(8):3825-9. doi: 10.52711/0974-360X.2023.00631   Available on:

1.    Vallès, J., and McArthur, E. Artemisia Systematics and Phylogeny: Cytogenetic and Molecular Insights. USDA Forest Service Proceedings RMRS-P-21. 2001.
2.    Sanz, M., Vilatersana, R., Hidalgo, O., Garcia-Jacas, N., Susanna, A., Schneeweiss, G. M., and Vallès, J. J. T. Molecular phylogeny and evolution of floral characters of Artemisia and allies (Anthemideae, Asteraceae): evidence from nrDNA ETS and ITS Sequences. 2008; 57(1): 66-78.
3.    Joshi., R. K. Chemical Constituents of Artemisia nilagirica (Clarke) from Western Himalaya of Uttrakhand, India. Asian J. Pharm. Ana. 2020; 10(4): 182-184.
4.    Carvalho, I. S., Cavaco, T., and Brodelius, M. Phenolic composition and antioxidant capacity of six artemisia species. Industrial Crops and Products. 2011; 33(2): 382-388. ^
5.    Rutuja Sawant, Aloka Baghkar, Sanjukta Jagtap, Lina Harad, Anagha Chavan, Nilofar A. Khan, Rupali P. Yevale, et al. A Review on - Herbs in Anticancer. Asian J. Res. Pharm. Sci. 2018; 8(4): 179-184.
6.    Poonam Gupta, Mohd. Yaqub Khan, Vikas Kumar Verma, and Pathak., A. Beating Cancer with Natural Plant Sources Asian J. Pharm. Tech. 2013; 3(2): 39-44.
7.    Brown, G. D. The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao). Molecules. 2010; 15(11): 7603-7698. ^10.3390/molecules15117603.
8.    Joshi., R. K. Artemisia capillaris: Medicinal uses and Future Source for Commercial Uses from Western Himalaya of Uttrakhand. Asian J. Res. Pharm. Sci. 2013; 3(3): 137-140.
9.    Hayat M. Mukhtar, Poonam Wadhan, and Singh., V. Pharmacognostical Characters of the Dried Flower Heads of Artemisia maritima Linn. Collected From Baramulla Region (Kashmir). Research J. Pharm. and Tech. 2011; 4(8): 1320-1322.
10.    Berra Djamila, Dia Ouahida, Laouini Salah Eddine, and Souheila., M. The impact of pH value in the Phenolic content and Antioxidant potential of Medicinal plant extract. Asian Journal of Research in Chemistry. 2022; 15(5): 331-336.
11.    Zineb Mahcene, Zoubida Mahcene, Kamilia Bireche, and Serdouk., F. Socioeconomic valorization and development of a bio-fungicide from essential oils of four Algerian aromatic and medicinal plants: Artemisia herba alba Asso, Mentha pulegium L, Rosmarinus officinalis L and Ocimum basilicum L. Asian J. Research Chem. 2020; 13(6): 473-484.
12.    Ekiert, H., Pajor, J., Klin, P., Rzepiela, A., Ślesak, H., and Szopa, A. Significance of Artemisia vulgaris L. (Common Mugwort) in the History of Medicine and Its Possible Contemporary Applications Substantiated by Phytochemical and Pharmacological Studies. Molecules. 2020; 25(19): 4415.
13.    Lee, J. K. Anti-inflammatory effects of eriodictyol in lipopolysaccharide-stimulated raw 264.7 murine macrophages. Arch Pharm Res. 2011; 34(4): 671-679. ^10.1007/s12272-011-0418-3.
14.    Li, C.-z., Jin, H.-h., Sun, H.-x., Zhang, Z.-z., Zheng, J.-x., Li, S.-h., and Han, S.-h. Eriodictyol attenuates cisplatin-induced kidney injury by inhibiting oxidative stress and inflammation. European Journal of Pharmacology. 2016; 772: 124-130. ^10.1016/j.ejphar.2015.12.042.
15.    Tsimogiannis, D. I., and Oreopoulou, V. Free radical scavenging and antioxidant activity of 5,7,3′,4′-hydroxy-substituted flavonoids. Innovative Food Science and Emerging Technologies. 2004; 5(4): 523-528. ^
16.    Gayathri Kumararaja, Saneesha P N, Satheesh Kumar S, Shahana Parveen V V, Shaikh Fuzail Abdur Rahim, Shamna K V, Shamna P A, et al. Development and Characterization of Silver nanoparticles (AgNPs) using Aqueous leaves broth of Artemisia vulgaris L., and its Anti-fungal activity. Research J. Pharm. and Tech. 2019; 12(10): 4822-4826.
17.    Neelamma G, Shaik Harun Rasheed, Anjaneyulu Vinukonda, and M., A. In-vitro Screening for Cytotoxic Activity of Herbal Plant Extracts on N2a Cell Lines. Research Journal of Pharmacy and Technology. 2009-2.; 14(4).
18.    Naveen Kumar, J. S. J. Phyto-Physico Chemical Evaluation and Antimicrobial Activity of Essential Oil of Artemisia dracunculus L. Asian J. Research Chem. 2010; 3(3): 755-757.
19.    Devmurari VP, and NP., I. Evaluation of Antioxidant Activity of Artemisia nilagirica. Research J. Pharmacognosy and Phytochemistry. 2010; 2(2): 148-151.
20.    Gordanian, B., Behbahani, M., Carapetian, J., and Fazilati, M. In vitro evaluation of cytotoxic activity of flower, leaf, stem and root extracts of five Artemisia species. Research in Pharmaceutical Sciences. 2014; 9(2): 91-96.
21.    Sharmila, K., and Padma, P. R. (2013). Anticancer activity of Artemisia vulgaris on hepatocellular carcinoma (HepG2) cells (Vol. 5).
22.    Nibret, E., and Wink, M. Volatile components of four Ethiopian Artemisia species extracts and their in vitro antitrypanosomal and cytotoxic activities. Phytomedicine. 2010; 17(5): 369-374. ^10.1016/j.phymed.2009.07.016.
23.    Rasheed, T., Bilal, M., Iqbal, H. M. N., and Li, C. Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids Surf B Biointerfaces. 2017; 158: 408-415. ^10.1016/j.colsurfb.2017.07.020.
24.    Thi Kim Ly, B., My Ly, D., Hoai Linh, P., Kim Son, H., Le Ha, N., and Thanh Chi, H. Screening of medicinal herbs for cytotoxic activity to leukemia cells. Journal of B.U.ON. 2020; 25(4): 1989-1996.
25.    Natividad, G. M., Broadley, K. J., Kariuki, B., Kidd, E. J., Ford, W. R., and Simons, C. Actions of Artemisia vulgaris extracts and isolated sesquiterpene lactones against receptors mediating contraction of guinea pig ileum and trachea. J Ethnopharmacol. 2011; 137(1): 808-816. ^10.1016/j.jep.2011.06.042.
26.    Xu, C., Zhang, H., Mu, L., and Yang, X. Artemisinins as Anticancer Drugs: Novel Therapeutic Approaches, Molecular Mechanisms, and Clinical Trials. 2020; 11(1608). ^10.3389/fphar.2020.529881.
27.    Numonov, S., Sharopov, F., Salimov, A., Sukhrobov, P., Atolikshoeva, S., Safarzoda, R., Habasi, M., et al. Assessment of Artemisinin Contents in Selected Artemisia Species from Tajikistan (Central Asia). 2019; 6(1): 23.
28.    Tu, Y. Artemisinin-A Gift from Traditional Chinese Medicine to the World (Nobel Lecture). Angew Chem Int Ed Engl. 2016; 55(35): 10210-10226. ^10.1002/anie.201601967.
29.    Soerjomataram, I., and Bray, F. Planning for tomorrow: global cancer incidence and the role of prevention 2020-2070. Nat Rev Clin Oncol. 2021; 18(10): 663-672. ^10.1038/s41571-021-00514-z.
30.    Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., and Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians. 2021; 71(3): 209-249. ^
31.    Abboud, M. R., Ghanem, K., and Muwakkit, S. Acute lymphoblastic leukemia in low and middle-income countries: disease characteristics and treatment results. Curr Opin Oncol. 2014; 26(6): 650-655. ^10.1097/cco.0000000000000125.
32.    Tandon, S. Acute leukemia treatment in low- and middle-income countries: Is it time for tailored therapy? Cancer Research, Statistics, and Treatment. 2020; 3. ^10.4103/CRST.CRST_238_20.
33.    Osterrieder, A., Cuman, G., Pan-Ngum, W., Cheah, P. K., Cheah, P.-K., Peerawaranun, P., Silan, M., et al. Economic and social impacts of COVID-19 and public health measures: results from an anonymous online survey in Thailand, Malaysia, the UK, Italy and Slovenia. BMJ Open. 2021; 11(7): e046863. ^10.1136/bmjopen-2020-046863.
34.    Tran, B. X., Nguyen, H. T., Le, H. T., Latkin, C. A., Pham, H. Q., Vu, L. G., Le, X. T. T., et al. Impact of COVID-19 on Economic Well-Being and Quality of Life of the Vietnamese During the National Social Distancing. 2020; 11(2289). ^10.3389/fpsyg.2020.565153.
35.    Bakouny, Z., Hawley, J. E., Choueiri, T. K., Peters, S., Rini, B. I., Warner, J. L., and Painter, C. A. COVID-19 and Cancer: Current Challenges and Perspectives. Cancer Cell. 2020; 38(5): 629-646. ^
36.    Eguchi, M., Eguchi-Ishimae, M., Tojo, A., Morishita, K., Suzuki, K., Sato, Y., Kudoh, S., et al. Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood. 1999; 93(4): 1355-1363.
37.    Gu, T. L., Popova, L., Reeves, C., Nardone, J., Macneill, J., Rush, J., Nimer, S. D., et al. Phosphoproteomic analysis identifies the M0-91 cell line as a cellular model for the study of TEL-TRKC fusion-associated leukemia. Leukemia. 2007; 21(3): 563-566. ^10.1038/sj.leu.2404555.
38.    Eguchi, M., and Eguchi-Ishimae, M. Absence of t(12;15) associated ETV6-NTRK3 fusion transcripts in pediatric acute leukemias. Med Pediatr Oncol. 2001; 37(4): 417. ^10.1002/mpo.1223.
39.    Eguchi, M., Eguchi-Ishimae, M., Green, A., Enver, T., and Greaves, M. Directing oncogenic fusion genes into stem cells via an SCL enhancer. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102(4): 1133-1138. ^10.1073/pnas.0405318102.
40.    Liu, Q., Schwaller, J., Kutok, J., Cain, D., Aster, J. C., Williams, I. R., and Gilliland, D. G. Signal transduction and transforming properties of the TEL-TRKC fusions associated with t(12;15)(p13;q25) in congenital fibrosarcoma and acute myelogenous leukemia. The EMBO Journal. 2000; 19(8): 1827-1838. ^10.1093/emboj/19.8.1827.
41.    Phụng, N. K. P. (2007). Phương pháp cô lập hợp chất hữu cơ.
42.    Strober, W. Trypan blue exclusion test of cell viability. Current Protocols in Immunology. 1997; 21(1): A. 3B. 1-A. 3B. 2.
43.    Strober, W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. 2001; Appendix 3: Appendix 3B. ^10.1002/0471142735.ima03bs21.
44.    Indrayanto, G., Putra, G. S., and Suhud, F. (2021). Chapter Six - Validation of in-vitro bioassay methods: Application in herbal drug research. In A. A. Al-Majed (Ed.), Profiles of Drug Substances, Excipients and Related Methodology (Vol. 46, pp. 273-307): Academic Press.
45.    Vijayarathna, S., and Sasidharan, S. Cytotoxicity of methanol extracts of Elaeis guineensis on MCF-7 and Vero cell lines. Asian Pacific Journal of Tropical Biomedicine. 2012; 2(10): 826-829. ^10.1016/S2221-1691(12)60237-8.
46.    Indrayanto, G., Putra, G. S., and Suhud, F. Validation of in-vitro bioassay methods: Application in herbal drug research. Profiles Drug Subst Excip Relat Methodol. 2021; 46: 273-307. ^10.1016/bs.podrm.2020.07.005.
47.    Pritchett, J. C., L. Naesens, and J. Montoya. (2014). Chapter 19 - Treating HHV-6 Infections: The Laboratory Efficacy and Clinical Use of Anti-HHV-6 Agents (e. a. L. Flamand Ed.): Elsevier: Boston.
48.    Seidl, P. Pharmaceuticals from natural products: Current trends. Anais da Academia Brasileira de Ciências. 2002; 74: 145-150. ^10.1590/S0001-37652002000100011.
49.    Warmuth, M., Kim, S., Gu, X. J., Xia, G., and Adrián, F. Ba/F3 cells and their use in kinase drug discovery. Curr Opin Oncol. 2007; 19(1): 55-60. ^10.1097/CCO.0b013e328011a25f.
50.    Elmore, S. Apoptosis: a review of programmed cell death. Toxicologic Pathology. 2007; 35(4): 495-516. ^10.1080/01926230701320337.
51.    Saleh, A. M., Aljada, A., Rizvi, S. A., Nasr, A., Alaskar, A. S., and Williams, J. D. In vitro cytotoxicity of Artemisia vulgaris L. essential oil is mediated by a mitochondria-dependent apoptosis in HL-60 leukemic cell line. BMC Complementary and Alternative Medicine. 2014; 14: 226. ^10.1186/1472-6882-14-226.
52.    Taleghani, A., Emami, S. A., and Tayarani-Najaran, Z. Artemisia: a promising plant for the treatment of cancer. Bioorganic and Medicinal Chemistry. 2020; 28(1): 115180. ^
53.    Larsson, P., Engqvist, H., Biermann, J., Werner Rönnerman, E., Forssell-Aronsson, E., Kovács, A., Karlsson, P., et al. Optimization of cell viability assays to improve replicability and reproducibility of cancer drug sensitivity screens. Scientific Reports. 2020; 10(1): 5798. ^10.1038/s41598-020-62848-5.
54.    Niepel, M., Hafner, M., Chung, M., and Sorger, P. K. Measuring Cancer Drug Sensitivity and Resistance in Cultured Cells. Current Protocols in Chemical Biology. 2017; 9(2): 55-74. ^10.1002/cpch.21.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available