Author(s):
Sugiyanta Sugiyanta, Harianto Notopuro, Jusak Nugraha
Email(s):
sugiyanta97.fk@unej.ac.id
DOI:
10.52711/0974-360X.2023.00604
Address:
Sugiyanta Sugiyanta1*, Harianto Notopuro2, Jusak Nugraha3
1Department of Biochemistry, Faculty of Medicine, Universitas Jember, Jember, Indonesia.
2Department of Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
3Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Hospital, Surabaya, Indonesia.
*Corresponding Author
Published In:
Volume - 16,
Issue - 8,
Year - 2023
ABSTRACT:
Hypertension is a major determinant of morbidity and mortality worldwide. Hypertension is the most common cause of death in Southeast Asia. The pathophysiology of hypertension is complex and not fully understood. Increased oxidative stress is considered one of the main mechanisms involved in the pathogenesis of endothelial dysfunction leading to hypertension. Therefore, antioxidant therapy can be an alternative option to prevent endothelial damage and hypertension. Robusta coffee and corn are high sources of antioxidants. This study aimed to analyze the effect of the coffee-corn mixture on NO, eNOS, sodium, and ACE serum levels in hypertensive rats. This research is an experimental laboratory study with a post-test only control group design. Robusta coffee and yellow corn samples were roasted at 180°C for 10 minutes. Rats were induced by DOCA salt and given a mixture of coffee-corn in a ratio of 75%: 25% and 50%: 50% for two weeks. After treatment, the levels of NO, eNOS, ACE, and F2-isoprostane from blood serum were measured. The results showed that there was no significant difference in serum Nitric Oxide levels in the negative, positive control group and the treatment group after treatment. There was a significant increase in eNOS levels and a significant decrease in serum sodium, ACE, and F2-isoprostane levels in the negative, positive, and treatment groups. In the path analysis, it was found that the administration of the coffee-corn mixture (50%:50%) can reduce blood pressure through two pathways, namely a decrease in the level of F2-isoprostane, which causes a decrease in sodium levels and a direct decrease in sodium levels.
Cite this article:
Sugiyanta Sugiyanta, Harianto Notopuro, Jusak Nugraha. Effect of Coffee-Corn Mix on Hypertensive Mice on Biomarkers of Nitric Oxide, eNOS, Sodium, and ACE Serum Levels. Research Journal of Pharmacy and Technology 2023; 16(8):3673-9. doi: 10.52711/0974-360X.2023.00604
Cite(Electronic):
Sugiyanta Sugiyanta, Harianto Notopuro, Jusak Nugraha. Effect of Coffee-Corn Mix on Hypertensive Mice on Biomarkers of Nitric Oxide, eNOS, Sodium, and ACE Serum Levels. Research Journal of Pharmacy and Technology 2023; 16(8):3673-9. doi: 10.52711/0974-360X.2023.00604 Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-8-24
REFERENCES:
1. Mills KT, Stefanescu A, & He J. The global epidemiology of hypertension. Nature Reviews Nephrology. 2020; 16(4): 223–237. DOI:10.1038/s41581-019-0244-2.
2. Castillo R. Special Satellite Symposium 05. Prevalence And Management Of Hypertension In Southeast Asia. 2016; 17(1). DOI:10.1097/01.hjh.0000499881.98439.59.
3. Kemenkes RI. Riset Kesehatan Dasar. Jakarta : Badan Penelitian dan Pengembangan Kesehatan Kementerian Kesehatan Republik Indonesia. 2013.
4. González J. Essential hypertension and oxidative stress: New insights. World Journal of Cardiology. 2014; 6(6): 353. DOI:10.4330/wjc.v6.i6.353.
5. Rodrigo R, Brito R, & González J. Oxidative Stress and Essential Hypertension. Update on Essential Hypertension. 2016; DOI:10.5772/64079.
6. Chaudhary P, Pandey A, Azad CS, Tia N, Singh M, & Gambhir IS. Association of oxidative stress and endothelial dysfunction in hypertension. Analytical Biochemistry. 2020; 590: 113535. DOI:10.1016/j.ab.2019.113535.
7. Tsiropoulou S, Dulak-Lis M, Montezano AC, & Touyz RM. Hypertension and cardiovascular disease. Hypertension and Cardiovascular Disease. 2016; 1–385. DOI:10.1007/978-3-319-39599-9.
8. Schmidt HHHW, Stocker R, Vollbracht C, Paulsen G, RileyD, Daiber A, & Cuadrado A. Antioxidants in Translational Medicine. Antioxidants and Redox Signaling. 2015; 23(14): 1130–1143. DOI:10.1089/ars.2015.6393.
9. Husen SA, Wahyuningsih SPA, Ansori ANM, Hayaza S, Susilo RJK, Winarni D, Punnapayak H, Darmanto W. Antioxidant Potency of Okra (Abelmoschus esculentus Moench) Pods Extract on SOD Level and Tissue Glucose Tolerance in Diabetic Mice. Res J Pharm Technol. 2019; 12(12): 5683. doi: 10.5958/0974-360X.2019.00983.1.
10. Hall JE, Granger JP, do Carmo JM, da Silva AA, Dubinion J, George E, HamzaS, Speed J, & Hall ME. Hypertension: Physiology and pathophysiology. Comprehensive Physiology. 2012; 2(4): 2393–2442. DOI:10.1002/cphy.c110058.
11. Ansori ANM, Fadholly A, Hayaza S, Susilo RJK, Inayatillah B, Winarni D, Husen SA. A Review on Medicinal Properties of Mangosteen (Garcinia mangostana L.). Res J Pharm Techol. 2020; 13(2):974-982. doi: 10.5958/0974-360X.2020.00182.1.
12. Wijaya MC, Bangsa PG, & Malkisedek MH. Perancangan Rebranding Produk ”Kopi Jagung Sidomukti” Kota Malang. Jurnal DKV Adiwarna. 2019; 1(14): 9.
13. Suzuki A, Fujii A, Yamamoto N, Yamamoto M, Ohminami H, Kameyama A, Shibuya Y, Nishizawa Y, Tokimitsu I, & Saito I. Improvement of hypertension and vascular dysfunction by hydroxyhydroquinone-free coffee in a genetic model of hypertension. FEBS Letters. 2006; 580(9): 2317–2322. DOI:10.1016/j.febslet.2006.03.047.
14. Ansori ANM, Fadholly A, Proboningrat A, Hayaza S, Susilo RJK, Naw SW, Posa GAV, Yusrizal YF, Sibero MT, Sucipto TH, Soegijanto S. In vitro antiviral activity of Pinus merkusii (Pinaceae) stem bark and cone against dengue virus type-2 (DENV-2). Res J Pharm Technol. 2021; 14(7):3705-8. doi: 10.52711/0974-360X.2021.00641.
15. Huang S, Ma S, Zhang D, Yang B, Sun J, Huang M, Lin H, Xie M, Zhao G. Protective effect of ferulic acid on human umbilical vein endothelial cell model of cold stress. Phcog Mag. 2020; 16(67):7-12. DOI: 10.4103/pm.pm_631_18.
16. Sorriento D, De Luca N, Trimarco B, & Iaccarino G. The antioxidant therapy: New insights in the treatment of hypertension. Frontiers in Physiology. 2018; 9. DOI:10.3389/fphys.2018.00258.
17. Sureshkumar J, Silambarasan R, Bharati KA, Krupa J, Amalraj S, & Ayyanar M. A review on ethnomedicinally important pteridophytes of India. Journal of Ethnopharmacology. 2018; 219: 269–287. DOI:10.1016/j.jep.2018.03.024.
18. Aziz RS & Kawadizaye. Diuretic effect of adiantumcapillus and its chemical constituents in hypertensive rats. International Journal of Pharmaceutical Research. 2019; 11(3): 111–119. DOI:10.31838/ijpr/2019.11.03.014.
19. Husen SA, Setyawan MF, Syadzha MF, Susilo RJK, Hayaza S, Ansori ANM, Alamsjah MA, Ilmi ZN, Wulandari PAC, Pudjiastuti P, Awang P, Winarni D. A Novel Therapeutic effects of Sargassum ilicifolium Alginate and Okra (Abelmoschus esculentus) Pods extracts on Open wound healing process in Diabetic Mice. Research J. Pharm. and Tech 2020; 13(6): 2764-2770. doi: 10.5958/0974-360X.2020.00491.6.
20. Basting T & Lazartigues E. DOCA-Salt Hypertension: an Update. Current Hypertension Reports. 2017; 19(4): 1–8. DOI:10.1007/s11906-017-0731-4.
21. Sugiyanta S, NotopuroH, Nugraha J, Soetjipto S, Handajani R. The Effect of Roasting Temperature on Ferulic Acid Levels of Robusta Coffee Bean with Thin Layer Chromatography (TLC)-Densitometry. Indian Journal of Forensic Medicine & Toxicology. 2020; 14(4): 3497-3503. DOI: https://doi.org/10.37506/ijfmt.v14i4.12168.
22. Abdel-Aal ESM & Rabalski I. Effect of baking on free and bound phenolic acids in wholegrain bakery products. Journal of Cereal Science. 2013; 57(3): 312–318. DOI: 10.1016/j.jcs.2012.12.001.
23. Leo F, Hutzler B, Ruddiman CA, Isakson BE, Cortese-Krott MM. Cellular microdomains for nitric oxide signaling in endothelium and red blood cells. Nitric Oxide - Biology and Chemistry. 2020; 96: 44–53. DOI:10.1016/j.niox.2020.01.002
24. Hermann M, Flammer A, & Lüscher TF. Nitric oxide in hypertension. Journal of Clinical Hypertension (Greenwich, Conn.). 2006; 8(12 Suppl 4): 17–29. DOI:10.1111/j.1524-6175.2006.06032.x.
25. Husen SA, Wahyuningsih SPA, Ansori ANM, Hayaza S, Susilo RJK, Winarni D, Punnapayak H, Darmanto W. Antioxidant Potency of Okra (Abelmoschus esculentus Moench) Pods Extract on SOD Level and Tissue Glucose Tolerance in Diabetic Mice. Res J Pharm Technol. 2019; 12(12): 5683. doi: 10.5958/0974-360X.2019.00983.1.
26. Ramprasath T, Vasudevan V, Sasikumar S, Puhari S, Saso L, Selvam G. Regression of Oxidative Stress by Targeting eNOS and Nrf2/ARE Signaling: A Guided Drug Target for Cardiovascular Diseases. Current Topics in Medicinal Chemistry. 2015; 15(9): 857–871. DOI:10.2174/1568026615666150220114417.
27. Ansori ANM, Kharisma VD, Fadholly A, Tacharina MR, Antonius Y, Parikesit AA. Severe Acute Respiratory Syndrome Coronavirus-2 Emergence and Its Treatment with Alternative Medicines: A Review. Research Journal of Pharmacy and Technology 2021; 14(10):5551-7. doi: 10.52711/0974-360X.2021.00967.
28. DeMartino AW, Kim-Shapiro DB, Patel RP, Gladwin MT. Nitrite and nitrate chemical biology and signalling. British Journal of Pharmacology. 2019; 176(2): 228–245. DOI:10.1111/bph.14484.
29. Zweier JL, Li H, Samouilov A, Liu X. Mechanisms of nitrite reduction to nitric oxide in the heart and vessel wall. Nitric Oxide - Biology and Chemistry. 2010; 22(2): 83–90. DOI:10.1016/j.niox.2009.12.004.
30. Husen SA, Ansori ANM, Hayaza S, Susilo RJK, Zuraidah AA, Winarni D, Punnapayak H, Darmanto W. Therapeutic Effect of Okra (Abelmoschus esculentus Moench) Pods Extract on Streptozotocin-Induced Type-2 Diabetic Mice. Res J Pharm Technol. 2019; 12(8):3703-3708. doi: 10.5958/0974-360X.2019.00633.4.
31. Gkaliagkousi E, Gavriilaki E, Triantafyllou A, Douma S. Clinical Significance of Endothelial Dysfunction in Essential Hypertension. Current Hypertension Reports. 2015; 17(11). DOI:10.1007/s11906-015-0596-3.
32. Fadholly A, Ansori ANM, Utomo B. Anticancer Effect of Naringin on Human Colon Cancer (WiDr Cells): In Vitro Study. Research Journal of Pharmacy and Technology. 2022; 15(2): 885-888. DOI: 10.52711/0974-360X.2022.00148.
33. Gheibi S, Jeddi S, Kashfi K, Ghasemi A. Regulation of vascular tone homeostasis by NO and H2S: Implications in hypertension. Biochemical Pharmacology. 2018; 149: 42–59. DOI:10.1016/j.bcp.2018.01.017.
34. Mordi I, Mordi N, Delles C, Tzemos N. Endothelial dysfunction in human essential hypertension. Journal of Hypertension. 2016; 34(8): 1464–1472. DOI:10.1097/HJH.0000000000000965.
35. Kharisma VD, Ansori ANM, Jakhmola V, Rizky WC, Widyananda MH, Probojati RT, Murtadlo AAA, Rebezov M, Scherbakov P, Burkov P, Matrosova Y, Romanov A, Sihombing MAEM, Antonius Y, Zainul R. Multi-strain human papillomavirus (HPV) vaccine innovation via computational study: A mini review. Res J Pharm Technol. 2022; 15(8).
36. Lopez-Sublet M, Caratti di Lanzacco L, Danser AHJ, Lambert M, Elourimi G, Persu A. Focus on increased serum angiotensin-converting enzyme level: From granulomatous diseases to genetic mutations. Clinical Biochemistry. 2018; 59: 1–8. DOI:10.1016/j.clinbiochem.2018.06.010.
37. Chappell MC. Biochemical evaluation of the renin-angiotensin system: The good, bad, and absolute? American Journal of Physiology - Heart and Circulatory Physiology. 2016; 310(2): H137–H152. DOI:10.1152/ajpheart.00618.2015.
38. Actis-Goretta L, Ottaviani JI, & Fraga CG. Inhibition of angiotensin converting enzyme activity by flavanol-rich foods. Journal of Agricultural and Food Chemistry. 2006; 54(1): 229–234. DOI: 10.1021/jf052263o.
39. Farquhar WB, Edwards DG, Jurkovitz CT, Weintraub WS. Dietary sodium and health: more than just blood pressure. J Am Coll Cardiol. 2015 Mar 17;65(10):1042-50. doi: 10.1016/j.jacc.2014.12.039.
40. Kanbay M, Chen Y, Solak Y, & Sanders PW. Mechanisms and consequences of salt sensitivity and dietary salt intake. Current Opinion in Nephrology and Hypertension. 2011; 20(1): 37–43. DOI:10.1097/MNH.0b013e32834122f1.
41. Choi JW, Park JS, & Lee CH. Interactive effect of high sodium intake with increased serum triglycerides on hypertension. PLoS ONE. 2020; 15(4): 1–16. DOI:10.1371/journal.pone.0231707.
42. Proboningrat A, Kharisma VD, Ansori ANM, Rahmawati R, Fadholly A, Posa GAV, Sudjarwo SA, Rantam FA, Achmad AB. In silico Study of Natural inhibitors for Human papillomavirus-18 E6 protein. Res J Pharm Technol. 2022; 15(3):1251-6. doi: 10.52711/0974-360X.2022.00209.
43. Filippatos TD, Makri A, Elisaf MS, Liamis G. Clinical Interventions in Aging Dovepress Hyponatremia in the elderly: challenges and solutions. Clinical Interventions in Aging. 2017; 12–1957. DOI:10.2147/CIA.S138535.
44. Sugiyanta S, Notopuro H, Nugraha J, Handajani R. F2-Isoprostane Levels in Deoxycorticosterone Acetate (DOCA)-Salt Induced Hypertensive Rats Administered with Coffee-Corn Mixture. Research J. Pharm. and Tech. 2021; 14(6). DOI: 10.52711/0974-360X.2021.00583.
45. Dedek K, Rosicka-kaczmarek J, Nebesny E, Kowalska G. Characteristics and biological properties of ferulic acid. 2019; 83(1): 71–85.
46. Amic A, Marković Z, Dimitric Markovic JM, Milenkovic D, Stepanic V. Antioxidative potential of ferulic acid phenoxyl radical. Phytochemistry. 2020; 170: 112218. DOI: 10.1016/j.phytochem.2019.112218.
47. Konakci CO, Yildiztugay E, Elbasan F, Yildiztugay A, Kucukoduk M. Assessment of antioxidant system and enzyme/nonenzyme regulation related to ascorbate-glutathione cycle in ferulic acid-treated Triticum aestivum L. roots under boron toxicity. Doga, Turkish Journal of Botany. 2020; 44: 47-61. DOI: 10.3906/bot-1904-23.
48. Nile SH, Ko EY, Kim DH, Keum YS. Screening of ferulic acid related compounds as inhibitors of xanthine oxidase and cyclooxygenase-2 with anti-inflammatory activity. Revista Brasileira de Farmacognosia. 2016; 26(1): 50–55. DOI:10.1016/j.bjp.2015.08.013.
49. Yu H, Yang T, Gao P, Wei X, Zhang H, Xiong S, Lu Z, Li L, Wei X, Chen J, Zhao Y, Arendshorst WJ, Shang Q, Liu D, Zhu Z. Caffeine intake antagonizes salt sensitive hypertension through improvement of renal sodium handling. Scientific Reports. 2016; 6(October 2015): 1–10. DOI:10.1038/srep25746.