Author(s): Ranim Alrouhayyah, Tatiana F. Sheshko, Svetlana N. Suslina

Email(s): ranimalrouhayya@yahoo.com

DOI: 10.52711/0974-360X.2023.00512   

Address: Ranim Alrouhayyah1*, Tatiana F. Sheshko2, Svetlana N. Suslina1 1Department of General Pharmaceutical and Biomedical Technology, Medical Institute, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University),
6 Miklukho-Maklaya street, Moscow, 117198, Russian Federation.
2Department of Physical and Colloidal Chemistry, Faculty of Science, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University),
6 Miklukho-Maklaya street, Moscow, 117198, Russian Federation.
*Corresponding Author

Published In:   Volume - 16,      Issue - 7,     Year - 2023


ABSTRACT:
The low solubility of drugs is the main reason for the decrease in bioavailability and, consequently, the therapeutic effect. Solid dispersions prepared using water-soluble polymers are a promising approach to solving this problem while maintaining the hydrophobic nature of the drug and reducing the dose load. The aim of this study was to enhance the solubility and the dissolution rate of mefenamic acid by formulating it in the form of solid dispersions. The solid dispersions were prepared by kneading method using polyethylene glycol 4000 as a carrier in various proportions. The dissolution test was performed for two hours in phosphate buffer (pH=8) and the drug release kinetics were studied using several mathematical models. The results showed that polyethylene glycol enhanced the dissolution rate of mefenamic acid in prepared formulations, and the higher the ratio (carrier: drug), the faster the drug dissolved. The best fit to the kinetic model was observed with the Higuchi and Ritger-Peppas models, indicating drug release via Fickian diffusion.


Cite this article:
Ranim Alrouhayyah, Tatiana F. Sheshko, Svetlana N. Suslina. Ranim Alrouhayyah, Tatiana F. Sheshko, Svetlana N. Suslina. Research Journal of Pharmacy and Technology 2023; 16(7):3115-9. doi: 10.52711/0974-360X.2023.00512

Cite(Electronic):
Ranim Alrouhayyah, Tatiana F. Sheshko, Svetlana N. Suslina. Ranim Alrouhayyah, Tatiana F. Sheshko, Svetlana N. Suslina. Research Journal of Pharmacy and Technology 2023; 16(7):3115-9. doi: 10.52711/0974-360X.2023.00512   Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-7-9


REFERNCES:
1.    Ahirwar B. Bioavailability study of Kankasava. Asian J. Pharm. Res. 3(1): Jan.-Mar. 2013; Page 01-02.
2.    Bagade O.M. Kad D.R. Bhargude D.N. Bhosale D.R. Kahane S.K.. Consequences and Impose of Solubility Enhancement of Poorly Water Soluble Drugs. Research J. Pharm. and Tech. 7(5): May, 2014; Page 598-607.
3.    Steffi P.F. Muthuirulappan S. Enhancing the Bioavailability of a Natural Product Curcumin to increase the Therapeutic Efficacy by a Novel Formulation Technology. Research J. Pharm. and Tech. 2019; 12(6): 2615-2620. doi: 10.5958/0974-360X.2019.00438.4
4.    Mukund T. Kiran R. Reshma Ch. Nikita J. Novel Methods to Enhance Solubility of Water Insoluble Drugs. Asian Journal of Research in Pharmaceutical Sciences. 2022; 12(2):151-6. doi: 10.52711/2231-5659.2022.00026
5.    Giri T.K. Mishra S. Tripathi D.K. Carriers used for the development of solid dispersion for poorly water-soluble drugs. Research J. Pharm. and Tech. 2011; 4(3): 356-366.
6.    Harshil M.P. Bhumi B.P. Chainesh N.Sh. Dhiren P.Sh. Nanosuspension Technologies for Delivery of Poorly Soluble Drugs- A Review. Research J. Pharm. and Tech. 2016; 9(5): 625-632. doi: 10.5958/0974-360X.2016.00120.7
7.    Punitha S. Srinivasa Reddy G. Srikrishna T. Lakshman Kumar M. Solid Dispersions: A Review. Research J. Pharm. and Tech. 4(3): March 2011; Page 331-334.
8.    Bhore S.D. A Review on Solid Dispersion as a Technique for Enhancement of Bioavailability of Poorly Water Soluble Drugs. Research J. Pharm. and Tech. 7(12): Dec. 2014; Page 1485-1491.
9.    Choudhary H. Yadav B. Patel P. Das P. Pillai S. Formulation and Evaluation of Ramipril Fast Dissolving Tablet using Solid Dispersion. Research J. Pharm. and Tech. 2019; 12(8): 3764-3772. doi: 10.5958/0974-360X.2019.00645.0.
10.    Ankita G. Galam, Dr. Sadhana R. Shahi, Swati Deore, Quraishi Inshrah Fatema. Solid Dispersion: Recapitulation. Asian J. Pharm. Tech. 2020; 10(2):107-117. doi: 10.5958/2231-5713.2020.00019.7.
11.    Rohan R. Vakhariya, S. M. Kumbhar, R. B. lade, P. S. Salunkhe, R. H. Ubale. Dissolution Rate Enhancement of Ramipril by Solid Dispersion Technique. Asian J. Pharm. Res. 2020; 10(1):08-12.
12.    Saffoon N. Riaz U. Naz HH. Kumar BS. Enhancement of Oral Bioavailability and Solid Dispersion: A Review. J App Pharm Sci. 2011; 1(7): 13-20.
13.    Askirat S,  Manpreet W,  Harikumar S. Solubility enhancement by solid dispersion method: A Review. J. Drug Deliv. Ther. 2013; 3: 148-155.
14.    Nurhikmah W. Sumirtapura YC. Pamudji JS. Dissolution Profile of Mefenamic Acid  Solid Dosage Forms in Two Compendial and Biorelevant (FaSSIF) Media. Sci Pharm. 2016; 84: 181–190.
15.    Ashok K. Nagabhushanam MV. Design and evaluation of spherical agglomerated crystals loaded fast disolving tablets for enhancing the solubilityof mefenamic acid. IAJPS. 2017; 4 (11): 4610-4616.
16.    Al-Kazemi R. Al-Basarah Y. Aly N. Dissolution enhancement of atorvastatin calcium by cocrystallization. Adv Pharm Bull. 2019; 9 (4): 559-570.
17.    Alrouhayya R. Sheshko T.F. Markova E.B. Boldyrev V.S. Razvodova A.A. Cherednichenko A.G. Study of Dissolution Kinetics of Mefenamic Acid Solid Dispersion with Polyvinylpyrrolidone. Herald of the Bauman Moscow State Technical University , Series Natural Sciences , 2021 , no . 6 ( 99 ) , pp . 79-95 ( in Russ . ) . DOI : https://doi.org/10.18698/1812-3368-2021-6-79-95.
18.    Mohamed R.I. Damodharan N. Mathematical Modelling of Dissolution Kinetics in Dosage forms. Research J. Pharm. and Tech. 2020; 13(3):1339-1345. doi: 10.5958/0974-360X.2020.00247.4.
19.    Patel Anar J., Singh R. P., Patel Vaibhav, Goswami Shambaditya. Application of Mathematical Models in Drug Release Kinetics of Lagerstroemia Speciosa Extract-Phospholipid Complex. Research J. Pharm. and Tech. 2022; 15(3):1257-2. doi: 10.52711/0974-360X.2022.00210.  
20.    Betageri G.V. Makarla K.R. Enhancement of dissolution of glyburide by solid dispersion and lyophilization techniques. International Journal of Pharmaceutics. 1995; 126(1–2): 155-160.  
21.    Bley H. Fussnegger B. Bodmeier R. Characterization and stability of solid dispersions based on PEG/polymer blends, Int J Pharm. 2010; 390(2):165-173
22.    Febriyenti F. Rahmi S. Halim A. Study of Gliclazide Solid Dispersion Systems Using PVP K-30 and PEG 6000 by Solvent Method. J Pharm Bioall Sci 2019;11:262-7.
23.    Bhaduka G. Rajawat J.S. Formulation Development and Solubility Enhancement of Voriconazole by Solid Dispersion Technique. Research J. Pharm. and Tech. 2020; 13(10):4557-4564. doi: 10.5958/0974-360X.2020.00803.3
24.    Guedes FL. Oliveira BG. Hernandes MZ. Simone AC. Veiga FJB. Lima MCA. et al. Solid Dispersions of Imidazolidinedione by PEG and PVP Polymers with Potential Antischistosomal Activities. AAPS PharmSciTech. 2011; 12 (1): 401–410.
25.    Biswal S. Sahoo J. Murthy PN. Characterisation of Gliclazide-PEG 8000 Solid Dispersions. Trop. J. Pharm. Res. 2009; 8  (5): 417-424.


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available