Author(s):
Rajni Yadav, Yogesh Vaishnav, ShekharVerma, Arvinder Kaur, Kavya Manjunath, Ashish Pandey
Email(s):
rajni.yadav@kalingauniversity.ac.in
DOI:
10.52711/0974-360X.2023.00575
Address:
Rajni Yadav1*, Yogesh Vaishnav2, ShekharVerma3, Arvinder Kaur4, Kavya Manjunath5, Ashish Pandey2
1Kalinga University, Faculty of Pharmacy, Naya Raipur, CG, 492101.
2Faculty of Pharmaceutical Sciences, Shri Shankaracharya Technical Campus, Bhilai, 490020.
3University College of Pharmacy, Chhattisgarh Swami Vivekanand Technical University, Bhilai, C.G
4Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, Constituent Unit of KLE Academy of Higher Education and Research (Deemed to be University), Rajajinagar 560010 Karnataka, India.
5Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru, Constituent Unit of KLE Academy of Higher Education and Research (Deemed to be University), Rajajinagar 560010 Karnataka, India.
*Corresponding Author
Published In:
Volume - 16,
Issue - 7,
Year - 2023
ABSTRACT:
Point of care diagnostics (POCD) are becoming an integral part in modern health care system. It helps enormously in diagnosis and monitoring of any illness. These diagnostics help to provide rapid and fast results at a low cost. POCD has an idea to develop such portable devices, chips, system using nanomaterials as detection-based sensors for quantifying different analytes in complex samples. Incorporating nano based structures in POCD makes it highly sensitive and a easy and fast detecting tool for future generation. Nanomaterials of various size and shape are prepared and due to their unique sensing properties, they help in signal generation and quantification of analyte become easy. In this review we aimed to focus on the types of point of care diagnostics made using nanomaterials, which can be a greatest tool in identification of analytes in future world.
Cite this article:
Rajni Yadav, Yogesh Vaishnav, ShekharVerma, Arvinder Kaur, Kavya Manjunath, Ashish Pandey. Point of Care diagnostics - Using Nanomaterials as detection probes. Research Journal of Pharmacy and Technology 2023; 16(7):3483-8. doi: 10.52711/0974-360X.2023.00575
Cite(Electronic):
Rajni Yadav, Yogesh Vaishnav, ShekharVerma, Arvinder Kaur, Kavya Manjunath, Ashish Pandey. Point of Care diagnostics - Using Nanomaterials as detection probes. Research Journal of Pharmacy and Technology 2023; 16(7):3483-8. doi: 10.52711/0974-360X.2023.00575 Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-7-72
REFERENCES:
1. Ahmed, W., Elhissi, A. & Subramani, K. Introduction to nano technology.Nano biomaterials Clin. Dent. 3–16 (2012) doi:10.1016/B978-1-4557-3127-5.00001-5, doi:10.21832/9781847692580-003.
2. Harper, G. N introduction. Creat. Writ. ix–xx2018)doi:10.21832/9781847692580-002.
3. Source:-https://www.wichlab.com/nanometer-scale-comparison-nanoparticle-size-comparison-nanotechnology-chart-ruler-2/
4. John H T Luong, Biosensor technology: technology push versus market pull Biotechnology Advances, 26; 2008:492-500.
5. Cass, A. E., Ferrocene-mediated enzyme electrode for amperometric determination of glucose, Analytical Chemistry 56(4); 1984: 667-671.
6. Turner, A. P., and Pickup, J. C. Diabetes mellitus: biosensors for research and management Biosensors 1(1); 1985: 85-115.
7. Turner, A. P. The Importance of the Troponin Biomarker in Myocardial Infarction Elsevier 42(8); 2013: 3184-96.
8. Lowe, C. R. An introduction to the concepts and technology of biosensors 1(1); 1985: 3-16.
9. Jose I et al, Encyclopedia of Agricultural, Food, and Biological Engineering, 2003, pp 119-123.
10. Wang, J. Electrochemical glucose biosensors Chemical reviews, 2008; 108(2): 814-825.
11. Newman, J. D., and Turner, A. P. Home Blood Glucose Biosensors: A Commercial Perspective. Biosensors and bioelectronics 20(12); 2005: 2435-2453.
12. Wang, J. Glucose biosensors: 40 years of advances and challenges Electroanalysis, 13(12); 2001: 983.
13. J. H. et al, Biosensor technology: technology push versus market pull, Biotechnology Advances 26(5); 2008: 492-500.
14. P etal. Implanted Sensors. Springer 2013; 159–190.
15. Mongra, A. J. Biomedical engineering of dental implant infections. Acad. Indus. Res. 1(6); 2012: 310-312.
16. D Orazio, Trends Biotechnol, 21(11);2003: 498-503.
17. Rich and Myszka, Grading the commercial optical biosensor literature—Class of 2008:'The Mighty Binders'JMolRecognit, 23(1); 2010: 1-64.
18. DiagnoSwiss chips: Biosensors for ultra-fast ELISA. Available from URL:http://www.diagnoswiss.com/principle_technology.html
19. Company Overview of GeneOhm Sciences, Inc. Available from URL:http://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapId=3037208
20. Motorola Life Sciences selects Insightful analytic technology to manufacture reliable high-quality biochips for genomics and expression data mining. Available from URL: http://www.solutionmetrics.com.au/customers/motorola.pdf
21. Rawson, D. M., Willmer, A. J., and Turner, A. P. Whole-cell biosensors for environmental monitoring. Biosensors 4(5); 1989: 299-311.
22. Terry, L., and Bordonaba, J. G. Encyclopedia of Biotechnology in Agriculture and Food.
23. Turner, Anthony, Isao Karube, and George S. Wilson. Biosensors: fundamentals and applications, Oxford University Press 1987; pp 600-630.
24. Biosensors Market by Application 2015. Retrieved from http://www.marketsandmarkets.com/: http://www.marketsandmarkets.com/Market-Reports/biosensors-market-798.html
25. Scheller, F. W., Schubert, F., Renneberg, R., Müller, H. G., Jänchen, M., and Weise, H. Biosensors: Trends and Commercialization. Biosensors 1(2); 1985: 135-160.
26. Yoo, E. H., and Lee, S. Y. Glucose biosensors: an overview of use in clinical practice Sensors, 10(5); 2010: 4558-4576.
27. Wang, J. Amperometric biosensors for clinical and therapeutic drug monitoring: a review Journal of pharmaceutical and biomedical analysis, 19(1); 1999:47-53.
28. J. I. et al Biosensors. Encyclopedia of Agricultural, Food, and Biological Engineering 2003; pp. 119-123.
29. Palleschi, G., Moscone, D., Micheli, L., and Tothill, I. E. Rapid and on-line instrumentation for food quality assurance, Woodhead publishing limited, Cambridge, UK, 2003; pp. 116-135.
30. Griffiths and Hall, Biosensors—what real progress is being made? Trends Biotechnol, 11(4); 1993: 122-30
31. Hulla,J.E.,Sahu,S.C.&Hayes,A.W.Nanotechnology:Historyandfuture.Hum.Exp.Toxicol.34,1318–1321(2015).
32. Nazarenko, Y., Zhen, H., Han, T., Lioy, P. J. &Mainelis, G. Potential forinhalation exposure to engineered nanoparticles from nanotechnology-basedcosmeticpowders. Environ.Health Perspect.120, 885–892(2013).
33. Yager, P., Domingo, G. J. &Gerdes, J. Point-of-care diagnostics for globalhealth.Annu.Rev.Biomed.Eng.10, 107–144(2018).
34. Vashist,S.K.Point-of-carediagnostics:Recentadvancesandtrends.Biosensors7,10–13(2017).
35. Gubala, V., Harris, L. F., Ricco, A. J., Tan, M. X. & Williams, D. E. Point of carediagnostics:Status andfuture.Anal.Chem.84,487–515(2012).
36. Lyberopoulou, A., Efstathopoulos, E. P. &Gazouli, M. Nanotechnology‐BasedRapid Diagnostic Tests. Proof Concepts Rapid Diagnostic Tests Technol. (2016)doi:10.5772/63908.
37. Choi, S., Tripathi, A. & Singh, D. Smart nanomaterials for biomedics. J. Biomed.Nanotechnol.10,3162–3188(2014).
38. Canyon Hydro et al. We are IntechOpen , the world ’ s leading publisher ofOpen Access books Built by scientists , for scientists TOP 1 %. Intech32, 137–144(2013).
39. Mousavi, S. M., Hashemi, S. A., Zarei, M., Amani, A. M. &Babapoor, A.Nanosensors for Chemical and Biological and Medical Applications. Med.Chem.(Los.Angeles).08, 205–217(2018).
40. Datta, S. Future Healthcare: Bioinformatics, Nano-Sensors, and EmergingInnovations.Nanosensors Theory Appl.Ind.Healthc.Def.343(2011).
41. Singh, P. & Yadava, R. D. S. Nanosensors for health care. NanosensorsforSmartCities(INC, 2020).doi:10.1016/b978-0-12-819870-4.00025-6.
42. Sheikhpour, M., Barani, L. &Kasaeian, A. Biomimetics in drug deliverysystems:A criticalreview.J.Control.Release253,97–109(2017).
43. Vincent, J. F. V., Bogatyreva, O. A., Bogatyrev, N. R., Bowyer, A. &Pahl, A. K.Biomimetics:Itspracticeandtheory.J.R.Soc.Interface3,471–482(2006).
44. Akbari jonous, Z., Shayeh, J. S., Yazdian, F., Yadegari, A., Hashemi, M., and Omidi, M. (2019). An electrochemical biosensor for prostate cancer biomarker detection using graphene oxide–gold nanostructures. Eng. Life Sci. 19, 206–216.