Author(s):
Rabab Kamel, Nahla A. El-Wakil, Nermeen A. Elkasabgy
Email(s):
nermeen.ahmed.elkasabgy@pharma.cu.edu.eg
DOI:
10.52711/0974-360X.2023.00569
Address:
Rabab Kamel1, Nahla A. El-Wakil2, Nermeen A. Elkasabgy3*
1Pharmaceutical Technology Department, National Research Centre, Cairo, Egypt.
2Cellulose and Paper Department, National Research Centre, Cairo, Egypt.
3Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562 Egypt.
*Corresponding Author
Published In:
Volume - 16,
Issue - 7,
Year - 2023
ABSTRACT:
Injectable in-situ forming hydrogel scaffolds (IHS) were prepared using TEMPO-oxidized nanofibrillated cellulose (TONFC) originating from sugarcane bagasse. TONFC (0.5%w/w) was prepared and characterized, then various concentrations of poloxamer 407 (P407) were added to prepare the thermo-responsive hydrogels. Two sources of calcium; Fujicalin® (DCP) or Hydroxyapatite (TCP), were utilized to prepare the calcium-enriched HIS loaded with the antiresorptive drug raloxifene hydrochloride. Physicochemical evaluation comprising the gelation temperature, drug content, injectability and in-vitro drug release were performed in addition to the examination of the morphological characters. The chosen formulation 'Ca-IHS4' consisted of TONFC, 15% P407 and 10% TCP displayed the most extended release pattern (for 12 days) with the smallest burst effect. SEM images of the in-situ formed scaffolds presented a highly porous 3D structure essential for cells migration, nutrient transport and tissue infiltration. Cell biology studies were performed using Saos-2 cells and proved that “Ca-IHS4” is biocompatible and has cell regenerative effect. These findings suggest that Ca-IHS4 presents a simple, safe and non-invasive platform for bone regeneration.
Cite this article:
Rabab Kamel, Nahla A. El-Wakil, Nermeen A. Elkasabgy. Injectable hydrogel scaffolds composed of Nanocellulose derived from sugarcane bagasse and combined with calcium for Bone regeneration. Research Journal of Pharmacy and Technology 2023; 16(7):3439-0. doi: 10.52711/0974-360X.2023.00569
Cite(Electronic):
Rabab Kamel, Nahla A. El-Wakil, Nermeen A. Elkasabgy. Injectable hydrogel scaffolds composed of Nanocellulose derived from sugarcane bagasse and combined with calcium for Bone regeneration. Research Journal of Pharmacy and Technology 2023; 16(7):3439-0. doi: 10.52711/0974-360X.2023.00569 Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-7-66
REFERENCES:
1. Kamel R, El-Wakil NA, Dufresne A, Elkasabgy NA. Nanocellulose: From an agricultural waste to a valuable pharmaceutical ingredient. International Journal of Biological Macromolecules. 2020;163:1579-90.doi.org/10.1016/j.ijbiomac.2020.07.242
2. Kamel R, El-Wakil NA, Abdelkhalek AA, Elkasabgy NA. Topical cellulose nanocrystals-stabilized nanoemulgel loaded with ciprofloxacin HCl with enhanced antibacterial activity and tissue regenerative properties. Journal of Drug Delivery Science and Technology. 2021;64:102553.doi.org/10.1016/j.jddst.2021.102553
3. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. Advanced materials. 2009;21(32‐33):3307-29. doi.org/ 10.1002/adma.200802106
4. Kamel R, El-Wakil NA, Abdelkhalek AA, Elkasabgy NA. Nanofibrillated cellulose/cyclodextrin based 3D scaffolds loaded with raloxifene hydrochloride for bone regeneration. International journal of biological macromolecules. 2020;156:704-16.doi.org/10.1016/j.ijbiomac.2020.04.019
5. Kamel R, Mabrouk M, El-Sayed SA, Beherei HH, Abouzeid RE, Abo el-fadl MT, et al. Nanofibrillated cellulose/glucosamine 3D aerogel implants loaded with rosuvastatin and bioactive ceramic for dental socket preservation. International journal of pharmaceutics. 2022;616:121549.doi.org/10.1016/j.ijpharm.2022.121549
6. Valo H, Arola S, Laaksonen P, Torkkeli M, Peltonen L, Linder MB, et al. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. European Journal of Pharmaceutical Sciences. 2013;50(1):69-77.doi.org/10.1016/j.ejps.2013.02.023
7. Liu Y, Luo D, Wang T. Hierarchical structures of bone and bioinspired bone tissue engineering. Small. 2016;12(34):4611-32. doi.org/10.1002/smll.201600626
8. Sakat BT, Sakhare RB, Suryvanshi UC, Kore P, Mohite S, Magdum C. Osteoporosis: The Brittle Bone. Asian Journal of Pharmaceutical Research. 2018;8(1):39-43. doi.org/ 10.5958/2231-5691.2018.00008.4
9. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Critical Reviews™ in Biomedical Engineering. 2012;40(5).doi.org/ 10.1615/critrevbiomedeng.v40.i5.10
10. Eldeeb AE, Salah S, Elkasabgy NA. Biomaterials for Tissue Engineering Applications and Current Updates in the Field: A Comprehensive Review. AAPS PharmSciTech. 2022;23(7):267.doi.org/10.1208/s12249-022-02419-1
11. Srikrishna T, Harikrishnan N. Recent advancement in Nano-drug delivery for Topical Wound Healing. Research Journal of Pharmacy and Technology. 2022;15(5):2320-6. doi.org/10.52711/0974-360X.2022.00386
12. Griffin M, Kalaskar D, Seifalian A, Butler P. Suppl-3, M4: An update on the Application of Nanotechnology in Bone Tissue Engineering. The open orthopaedics journal. 2016;10:836.doi.org/ 10.2174/1874325001610010836
13. Kelleher CM, Vacanti JP. Engineering extracellular matrix through nanotechnology. Journal of the Royal Society Interface. 2010;7(suppl_6):S717-S29.doi.org/10.1098/rsif.2010.0345.
14. Gomes ME, Rodrigues MT, Domingues RM, Reis RL. Tissue engineering and regenerative medicine: new trends and directions—a year in review. Tissue Engineering Part B: Reviews. 2017;23(3):211-24.doi.org/10.1089/ten.TEB.2017.0081
15. Fathi-Achachelouei M, Knopf-Marques H, Ribeiro da Silva CE, Barthès J, Bat E, Tezcaner A, et al. Use of nanoparticles in tissue engineering and regenerative medicine. Frontiers in bioengineering and biotechnology. 2019;7:113. doi.org/10.3389/fbioe.2019.00113
16. Suh KS, Lee YS, Seo SH, Kim YS, Choi EM. Gold nanoparticles attenuates antimycin A-induced mitochondrial dysfunction in MC3T3-E1 osteoblastic cells. Biological trace element research. 2013;153(1):428-36.doi.org/10.1007/s12011-013-9679-7
17. Adel IM, ElMeligy MF, Elkasabgy NA. Conventional and Recent Trends of Scaffolds Fabrication: A Superior Mode for Tissue Engineering. Pharmaceutics. 2022;14(2):306. doi.org/10.3390/pharmaceutics14020306
18. Ansari M. Bone tissue regeneration: biology, strategies and interface studies. Progress in biomaterials. 2019;8(4):223-37.doi.org/10.1007/s40204-019-00125-z
19. Hu S, Zhou Y, Zhao Y, Xu Y, Zhang F, Gu N, et al. Enhanced bone regeneration and visual monitoring via superparamagnetic iron oxide nanoparticle scaffold in rats. Journal of Tissue Engineering and Regenerative Medicine. 2018;12(4):e2085-e98.doi.org/10.1002/term.2641
20. Li Y, Ye D, Li M, Ma M, Gu N. Adaptive materials based on iron oxide nanoparticles for bone regeneration. ChemPhysChem. 2018;19(16):1965-79.doi.org/10.1002/cphc.201701294
21. Walmsley GG, McArdle A, Tevlin R, Momeni A, Atashroo D, Hu MS, et al. Nanotechnology in bone tissue engineering. Nanomedicine: Nanotechnology, Biology and Medicine. 2015;11(5):1253-63.doi.org/10.1016/j.nano.2015.02.013
22. Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorganic and medicinal chemistry. 2009;17(8):2950-62.doi.org/10.1016/j.bmc.2009.02.043
23. Kong G, Braun RD, Dewhirst MW. Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer research. 2000;60(16):4440-5.
24. Edmundson M, Thanh NT, Song B. Nanoparticles based stem cell tracking in regenerative medicine. Theranostics. 2013;3(8):573. doi.org/ 10.7150/thno.5477
25. Jendelová P, Herynek V, DeCroos J, Glogarová K, Andersson B, Hájek M, et al. Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine. 2003;50(4):767-76.doi.org/10.1002/mrm.10585
26. Kleinman HK, Philp D, Hoffman MP. Role of the extracellular matrix in morphogenesis. Current opinion in biotechnology. 2003;14(5):526-32.doi.org/10.1016/j.copbio.2003.08.002
27. Motealleh A, Czieborowski M, Philipp B, Nowak S, Kehr NS. Bifunctional nanomaterials for enhanced cell proliferation and for the reduction of bacterial bioluminescence/fitness. Advanced Materials Interfaces. 2020;7(13):2000086. doi.org/10.1002/admi.202000086
28. Kim K, Fisher JP. Nanoparticle technology in bone tissue engineering. Journal of drug targeting. 2007;15(4):241-52. doi.org/10.1080/10611860701289818
29. Ratner BD, Bryant SJ. Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng. 2004;6:41-75. doi.org/ 10.1146/annurev.bioeng.6.040803.140027
30. Elkasabgy NA, Salama A, Salama AH. Exploring the effect of intramuscularly injected polymer/lipid hybrid nanoparticles loaded with quetiapine fumarate on the behavioral and neurological changes in cuprizone-induced schizophrenia in mice. Journal of Drug Delivery Science and Technology. 2023;79:104064.doi.org/10.1016/j.jddst.2022.104064
31. Cui F-Z, Li Y, Ge J. Self-assembly of mineralized collagen composites. Materials Science and Engineering: R: Reports. 2007;57(1-6):1-27.doi.org/10.1016/J.MSER.2007.04.001
32. Patel M, Fisher JP. Biomaterial scaffolds in pediatric tissue engineering. Pediatric research. 2008;63(5):497.doi.org/10.1203/01.PDR.0b013e318165eb3e
33. Elkasabgy NA, Mahmoud AA. Fabrication strategies of scaffolds for delivering active ingredients for tissue engineering. AAPS PharmSciTech. 2019;20(7):256.doi.org/10.1208/s12249-019-1470-4
34. Jones AC, Milthorpe B, Averdunk H, Limaye A, Senden TJ, Sakellariou A, et al. Analysis of 3D bone ingrowth into polymer scaffolds via micro-computed tomography imaging. Biomaterials. 2004;25(20):4947-54. doi.org/10.1016/j.biomaterials.2004.01.047
35. Kim HK, Shim WS, Kim SE, Lee K-H, Kang E, Kim J-H, et al. Injectable in situ–forming pH/thermo-sensitive hydrogel for bone tissue engineering. Tissue Engineering Part A. 2009;15(4):923-33. doi.org/ 10.1089/ten.tea.2007.0407
36. Hossain A, Roy S, Guin PS. The importance of advance biomaterials in modern technology: a review. Asian Journal of Research in Chemistry. 2017;10(4):441-53. doi.org/10.5958/0974-4150.2017.00073.6
37. Wu G, Feng C, Quan J, Wang Z, Wei W, Zang S, et al. In situ controlled release of stromal cell-derived factor-1α and antimiR-138 for on-demand cranial bone regeneration. Carbohydrate polymers. 2018;182:215-24. doi.org/10.1016/j.carbpol.2017.10.090
38. Silva R, Fabry B, Boccaccini AR. Fibrous protein-based hydrogels for cell encapsulation. Biomaterials. 2014;35(25):6727-38.doi.org/10.1016/j.biomaterials.2014.04.078
39. Aswin SK, Jothishwar S, Nayagam P, Priya G. Scaffolds for biomolecule delivery and controlled release-A Review. Research Journal of Pharmacy and Technology. 2018;11(10):4719-30.doi.org/10.5958/0974-360X.2018.00861.2
40. Ruel-Gariepy E, Leroux JC. In situ-forming hydrogels--review of temperature-sensitive systems. Eur J Pharm Biopharm. 2004;58(2):409-26.doi.org/10.1016/j.ejpb.2004.03.019
41. Elela MMA, ElKasabgy NA, Basalious EB. Bio-shielding in situ forming gels (BSIFG) loaded with lipospheres for depot injection of quetiapine fumarate: in vitro and in vivo evaluation. AAPS PharmSciTech. 2017;18(8):2999-3010.doi.org/10.1208/s12249-017-0789-y
42. Veyries ML, Couarraze G, Geiger S, Agnely F, Massias L, Kunzli B, et al. Controlled release of vancomycin from poloxamer 407 gels. International journal of pharmaceutics. 1999;192(2):183-93.doi.org/ 10.1016/s0378-5173(99)00307-5
43. Paavola A, Kilpelainen I, Yliruusi J, Rosenberg P. Controlled release injectable liposomal gel of ibuprofen for epidural analgesia. International journal of pharmaceutics. 2000;199(1):85-93.doi.org/10.1016/S0378-5173(00)00376-8
44. Wenzel JG, Balaji KS, Koushik K, Navarre C, Duran SH, Rahe CH, et al. Pluronic F127 gel formulations of deslorelin and GnRH reduce drug degradation and sustain drug release and effect in cattle. J Control Release. 2002;85(1-3):51-9. doi.org/10.1016/s0168-3659(02)00271-7
45. Zhang L, Parsons DL, Navarre C, Kompella UB. Development and in-vitro evaluation of sustained release poloxamer 407 (P407) gel formulations of ceftiofur. J Control Release. 2002;85(1-3):73-81.doi.org/ 10.1016/s0168-3659(02)00273-0
46. Kamel R, Basha M, El Awdan S. Development and evaluation of long-acting epidural “smart” thermoreversible injection loaded with spray-dried polymeric nanospheres using experimental design. J Drug Targ. 2013;21(3):277-90.doi.org/10.3109/1061186X.2012.747527
47. Gou M, Li X, Dai M, Gong C, Wang X, Xie Y, et al. A novel injectable local hydrophobic drug delivery system: Biodegradable nanoparticles in thermo-sensitive hydrogel. International journal of pharmaceutics. 2008;359(1-2):228-33. doi.org/ 10.1016/j.ijpharm.2008.03.023
48. Morello KC, Wurz GT, DeGregorio MW. Pharmacokinetics of selective estrogen receptor modulators. Clinical pharmacokinetics. 2003;42(4):361-72.doi.org/10.2165/00003088-200342040-00004
49. Rao G, Rao VS, Ramakrishna K. Quality by Design Approach for the Development and Validation of LC method for the Estimation of in-Vitro release of Raloxifene hydrochloride in Dosage Formulation. Research Journal of Pharmacy and Technology. 2015;8(11):1487-94.doi.org/10.5958/0974-360X.2015.00266.8
50. Patil PH, Belgamwar VS, Patil PR, Surana SJ. Enhancement of solubility and dissolution rate of poorly water soluble raloxifene using microwave induced fusion method. Brazilian Journal of Pharmaceutical Sciences. 2013;49(3):571-8.doi.org/10.1590/S1984-82502013000300019
51. Palanisamy P, Jaykar B, Chandira M, Venkateswarlu B, Prabakaran M. Pharmacokinetic Modifications of Immediate release tablets of Raloxifene Hydrochloride by hot melt Technology. Research Journal of Pharmacy and Technology. 2020;13(9):4092-8.doi.org/10.5958/0974-360X.2020.00723.4
52. Abdel-Salam FS, Elkheshen SA, Mahmoud AA, Basalious EB, Amer MS, Mostafa AA, et al. In-situ forming chitosan implant-loaded with raloxifene hydrochloride and bioactive glass nanoparticles for treatment of bone injuries: Formulation and biological evaluation in animal model. International journal of pharmaceutics. 2020:119213.doi.org/10.1016/j.ijpharm.2020.119213
53. Elkasabgy NA, Abdel-Salam FS, Mahmoud AA, Basalious EB, Amer MS, Mostafa AA, et al. Long lasting in-situ forming implant loaded with raloxifene HCl: An injectable delivery system for treatment of bone injuries. International journal of pharmaceutics. 2019;571:118703.doi.org/10.1016/j.ijpharm.2019.118703
54. Upadhyay R. Role of calcium bio-minerals in regenerative medicine and tissue engineering. J Stem Cell Res Ther. 2017;2(6):166-75.doi.org/10.15406/jsrt.2017.02.00081
55. Boskey A, Bullough P, Vigorita V, Di Carlo E. Calcium-acidic phospholipid-phosphate complexes in human hydroxyapatite-containing pathologic deposits. The American journal of pathology. 1988;133(1):22.
56. Skibiński S, Cichoń E, Haraźna K, Marcello E, Roy I, Witko M, et al. Functionalized tricalcium phosphate and poly (3-hydroxyoctanoate) derived composite scaffolds as platforms for the controlled release of diclofenac. Ceramics International. 2021;47(3):3876-83. doi.org/ 10.1016/j.ceramint.2020.09.248
57. Dorozhkin SV. Calcium orthophosphate-based bioceramics. Materials. 2013;6(9):3840-942.doi.org/10.3390/ma6093840
58. Nugraha AP, Ramadhani NF, Saputra D, Mappananrang RA, Purnamasari AE, Anwar AA, et al. An Insight of Proanthocyanidin and Polyamidoamine-Calcium Phosphate Nanoparticles as Biomaterial Candidate for Dentin regeneration in Dental Pulp Capping: A Narrative Review. Research Journal of Pharmacy and Technology. 2022;15(7):2888-94.doi.org/10.52711/0974-360X.2022.00482
59. Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta biomaterialia. 2012;8(4):1401-21.doi.org/10.1016/j.actbio.2011.11.017
60. Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY. Bioactive calcium phosphate materials and applications in bone regeneration. Biomaterials research. 2019;23(1):1-11.doi.org/10.1186/s40824-018-0149-3
61. LeGeros RZ. Calcium phosphate-based osteoinductive materials. Chemical reviews. 2008;108(11):4742-53. DOI: 10.1021/cr800427g
62. Ben-Nissan B. Advances in calcium phosphate biomaterials. 2014. doi.org/10.1007/978-3-642-53980-0_16
63. Teixeira S, Rodriguez M, Pena P, De Aza A, De Aza S, Ferraz M, et al. Physical characterization of hydroxyapatite porous scaffolds for tissue engineering. Materials Science and Engineering: C. 2009;29(5):1510-4.doi.org/10.1016/j.msec.2008.09.052
64. Singh S, Pal A, Mohanty S. Nano Structure of Hydroxyapatite and its modern approach in Pharmaceutical Science. Research Journal of Pharmacy and Technology. 2019;12(3):1463-72.doi.org/10.5958/0974-360X.2019.00243.9
65. Ramesh N, Moratti SC, Dias GJ. Hydroxyapatite–polymer biocomposites for bone regeneration: A review of current trends. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2018;106(5):2046-57.doi.org/10.1002/jbm.b.33950
66. Kang Z, Zhang X, Chen Y, Akram MY, Nie J, Zhu X. Preparation of polymer/calcium phosphate porous composite as bone tissue scaffolds. Materials Science and Engineering: C. 2017;70:1125-31.doi.org/10.1016/j.msec.2016.04.008
67. FUJI-CHEMICAL-INDUSTRY-CO.LTD. Fujicalin®. [cited 2020 December 23]; Available from: Available from: http://www.fujichemical.co.jp/english/newsletter/newsletter_pharma_0712.html.
68. Saito T, Kimura S, Nishiyama Y, Isogai A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules. 2007;8(8):2485-91. doi.org/10.1021/bm0703970
69. El-Mahrouk G, Aboul-Einien MH, Elkasabgy NA. Formulation and evaluation of meloxicam orally dispersible capsules. Asian J Pharm Sci. 2009;4:8-22.
70. Adel S, ElKasabgy NA. Design of innovated lipid-based floating beads loaded with an antispasmodic drug: in-vitro and in-vivo evaluation. Journal of Liposome Research. 2014;24(2):136-49.doi.org/10.3109/08982104.2013.857355
71. Schmolka IV. Artificial skin. I. Preparation and properties of pluronic F-127 gels of treatment of burns. J Biomed Mater Res. 1972;6:571–82. doi.org/10.1002/jbm.820060609
72. Wei G, Xu H, Ding PT, Li SM, Zheng JM. Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies. J Control Release. 2002;83(1):65-74. doi.org/10.1016/s0168-3659(02)00175-x
73. Kwon KW, Park, M. J., Hwang, J., Char, K. Effects of alcohol addition on gelation in aqueous solution of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer. Polymer J. 2001;33(5):404-10.doi.org/10.1295/POLYMJ.33.404
74. Yu GE, Deng, Y., Dalton, S., Wang, Q.G., Attwood, D., Price, C., Booth, C. . Micellization and gelation of triblock copoly (oxyethylene oxypropylene oxyethylene), f127. J Chem Soc, Faraday Trans. 1992;88(17):2537-44.doi.org/10.1295/polymj.33.404
75. Rawlins EA. Rheology. In: Careless, JE (Ed), Bentley's Textbook of Pharmaceutics: Bailliére Tindall, London, England; 1977. p. 123-39.
76. Leroux L, Hatim Z, Freche M, Lacout J. Effects of various adjuvants (lactic acid, glycerol, and chitosan) on the injectability of a calcium phosphate cement. Bone. 1999;25(2):31S-4S. doi.org/ 10.1016/s8756-3282(99)00130-1
77. Mahmoud AA, Elkasabgy NA, Abdelkhalek AA. Design and characterization of emulsified spray dried alginate microparticles as a carrier for the dually acting drug roflumilast. Eur J Pharm Sci. 2018;122:64-76.doi.org/10.1016/j.ejps.2018.06.015
78. Korsmeyer R, Gurny R, Doelker E, Buri P, Peppas N. Mechanisms of potassium chloride release from compressed, hydrophilic, polymeric matrices: effect of entrapped air. J Pharm Sci. 1983;72(10):1189-91. doi.org/10.1002/jps.2600721021
79. Peppas N. Analysis of Fickian and non-Fickian drug release from polymers. 1985.
80. Segal L, Creely J, Martin Jr A, Conrad C. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile research journal. 1959;29(10):786-94. doi.org/10.1177/0040517559029010
81. Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules. 2006;7(6):1687-91.doi.org/10.1021/bm060154s
82. Ishikawa K, Miyamoto Y, Takechi M, Toh T, Kon M, Nagayama M, et al. Non‐decay type fast‐setting calcium phosphate cement: Hydroxyapatite putty containing an increased amount of sodium alginate. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials. 1997;36(3):393-9. doi.org/10.1002/(sici)1097-4636(19970905)36:3<393::aid-jbm14>3.0.co;2-f
83. Martin A. Physical pharmacy: physical chemical principles in the pharmaceutical sciences: BI Waverly. Pvt Ltd; 1993.
84. Paul S, Egbert J, Walsh A, Hoey M. Pressure measurements during injection of corticosteroids. Med Biol Eng Comput. 1998;36(6):729-33. doi.org/10.1007/BF02518876
85. Sigma-Aldrich. Hydroxyapatite. [cited 2020 December 23]; Available from: Available from: https://www.sigmaaldrich.com/catalog/product/aldrich/900203?lang=en®ion=EG&cm_sp=Insite-_-caSrpResults_srpRecs_srpModel_hydroxyapatite-_-srpRecs3-3.
86. Bohner M, Baroud G. Injectability of calcium phosphate pastes. Biomaterials. 2005;26(13):1553-63. doi.org/10.1016/j.biomaterials.2004.05.010
87. Montufar E, Maazouz Y, Ginebra M. Relevance of the setting reaction to the injectability of tricalcium phosphate pastes. Acta biomaterialia. 2013;9(4):6188-98. doi.org/10.1016/j.actbio.2012.11.028
88. O'Neill R, McCarthy H, Montufar E, Ginebra M-P, Wilson D, Lennon A, et al. Critical review: Injectability of calcium phosphate pastes and cements. Acta biomaterialia. 2017;50:1-19.doi.org/ 10.1016/j.actbio.2016.11.019
89. Nakata R, Tachibana A, Tanabe T. Preparation of keratin hydrogel/hydroxyapatite composite and its evaluation as a controlled drug release carrier. Materials Science and Engineering: C. 2014;41:59-64.doi.org/10.1016/j.msec.2014.04.016
90. Fosca M, Rau JV, Uskoković V. Factors influencing the drug release from calcium phosphate cements. Bioactive Materials. 2021.doi.org/10.1016/j.bioactmat.2021.05.032
91. Bose S, Tarafder S, Edgington J, Bandyopadhyay A. Calcium phosphate ceramics in drug delivery. Jom. 2011;63(4):93-8. doi.org/10.1007/s11837-011-0065-7
92. Sato H, Miyagawa Y, Okabe T, Miyajima M, Sunada H. Dissolution mechanism of diclofenac sodium from wax matrix granules. Journal of pharmaceutical sciences. 1997;86(8):929-34.doi.org/10.1021/js960221w
93. Nishiyama Y, Sugiyama J, Chanzy H, Langan P. Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society. 2003;125(47):14300-6. doi.org/10.1021/ja037055w
94. Londoño-Restrepo SM, Jeronimo-Cruz R, Millán-Malo BM, Rivera-Muñoz EM, Rodriguez-García ME. Effect of the nano crystal size on the X-ray diffraction patterns of biogenic hydroxyapatite from human, bovine, and porcine bones. Sci Rep. 2019;9(1):1-12. doi.org/10.1038/s41598-019-42269-9
95. Qin L, Zhao X, He Y, Wang H, Wei H, Zhu Q, et al. Preparation, characterization, and in vitro evaluation of resveratrol-loaded cellulose aerogel. Materials. 2020;13(7):1624.doi.org/10.3390/ma13071624
96. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63.doi.org/10.1016/0022-1759(83)90303-4
97. Taranta A, Brama M, Teti A, Scandurra R, Spera G, Agnusdei D, et al. The selective estrogen receptor modulator raloxifene regulates osteoclast and osteoblast activity in vitro. Bone. 2002;30(2):368-76.doi.org/ 10.1016/s8756-3282(01)00685-8
98. Elkasabgy NA, Mahmoud AA, Shamma RN. Determination of cytocompatibility and osteogenesis properties of in situ forming collagen-based scaffolds loaded with bone synthesizing drug for bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials. 2018;67(8):494-500.doi.org/10.1080/00914037.2017.1354195
99. Singh D, Daharwal S, Rawat M. Hydrogels-A potent carter in wound healing. Research Journal of Pharmacy and Technology. 2008;1(1):6-13.
100. Bacakova L, Filova E, Parizek M, Ruml T, Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnology advances. 2011;29(6):739-67.doi.org/10.1016/j.biotechadv.2011.06.004
101. Patel DK, Seo Y-R, Dutta SD, Lim K-T. Enhanced osteogenesis of mesenchymal stem cells on electrospun cellulose nanocrystals/poly (ε-caprolactone) nanofibers on graphene oxide substrates. RSC advances. 2019;9(62):36040-9.doi.org/10.1039/c9ra06260b
102. Lin N, Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal. 2014;59:302-25. doi.org/10.1016/j.eurpolymj.2014.07.025
103. Liu H, Li W, Liu C, Tan J, Wang H, Hai B, et al. Incorporating simvastatin/poloxamer 407 hydrogel into 3D-printed porous Ti6Al4V scaffolds for the promotion of angiogenesis, osseointegration and bone ingrowth. Biofabrication. 2016;8(4):045012.doi.org/10.1088/1758-5090/8/4/045012
104. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. European spine journal. 2001;10(2):S96-S101.doi.org/10.1007/s005860100282
105. Ambard AJ, Mueninghoff L. Calcium phosphate cement: review of mechanical and biological properties. J Prosthodont. 2006;15(5):321-8. doi.org/10.1111/j.1532-849X.2006.00129.x
106. Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta biomaterialia. 2013;9(9):8037-45. doi.org/10.1016/j.actbio.2013.06.014
107. Hutchings G, Moncrieff L, Dompe C, Janowicz K, Sibiak R, Bryja A, et al. Bone regeneration, reconstruction and use of osteogenic cells; from basic knowledge, animal models to clinical trials. Journal of clinical medicine. 2020;9(1):139.doi.org/10.3390/jcm9010139
108. Hunt NC, Grover LM. Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol Lett. 2010;32(6):733-42.doi.org/10.1007/s10529-010-0221-0
109. Agrawal CM, Ray RB. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2001;55(2):141-50. doi.org/10.1002/1097-4636(200105)55:2<141::aid-jbm1000>3.0.co;2-j
110. Radhika G, Reddy P, Venkatesh P, Reddy R. An overview on regenerative medicine. Research Journal of Pharmacy and Technology. 2010;3(3):727-8.
111. Chang H-I, Wang Y. Cell responses to surface and architecture of tissue engineering scaffolds. Regenerative medicine and tissue engineering-cells and biomaterials: InTechOpen; 2011.doi.org/ 10.5772/21983
112. Montaser MM, Soliman S, Khalil NM, Eladawy M. EFFECT OF RALOXIFENE IN THE PREVENTION OF OSTEOPOROSIS OF ALVEOLAR BONE INDUCED BY HIGH FAT DIET IN RATS. Alex Dent J. 2019;44(2):33-8.doi.org/10.21608/ADJALEXU.2019.57360
113. Lou Y-R, Kanninen L, Kuisma T, Niklander J, Noon LA, Burks D, et al. The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. Stem cells and development. 2014;23(4):380-92. doi.org/10.1089/scd.2013.0314
114. Kamitakahara M, Ohtsuki C, Miyazaki T. Behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J Biomater Appl. 2008;23(3):197-212. doi.org/10.1177/0885328208096798
115. Sulaiman SB, Keong TK, Cheng CH, Saim AB, Idrus RBH. Tricalcium phosphate/hydroxyapatite (TCP-HA) bone scaffold as potential candidate for the formation of tissue engineered bone. The Indian journal of medical research. 2013;137(6):1093.
116. Mandrycky C, Wang Z, Kim K, Kim D-H. 3D bioprinting for engineering complex tissues. Biotechnology advances. 2016;34(4):422-34. doi.org/10.1016/j.biotechadv.2015.12.011