ABSTRACT:
Background: Drug-induced nephrotoxicity is one of the most common causes of acute kidney injury. Cisplatin is one of the most effective and potent anticancer drugs, induces a reduction in the antioxidant, leading to a failure of the antioxidant defense against free-radical damage generated by antitumor drug. Objectives: This study was conducted to examine the possible ameliorative activity of Daflon against Cis-induce acute kidney injury. Materials and methods: Animals divided into six groups, group ?: received NaCl on a daily; group ??: received Cisplatin (7.5mg/kg) single dose; group ???: received Daflon mini dose (50mg/kg) for 15 successive days, group IV: received Daflon max dose (100mg/kg/day) for 15 successive days; group V: received Daflon mini dose (50mg/kg) for 15 successive days and a single IP dose of Cisplatin (7.5mg/kg) to be injected on day 15, group VI : received Daflon max dose (100mg/kg) for 15 successive days and a single IP dose of Cisplatin (7.5mg/kg) to be injected on day 15, Finally, after euthanization of each animal by diethyl ether, the samples were collected for analysis. Serum MDA, Serum GSH and Tumor Necrosis Factor (TNF-a) had been used as an indicator for the protective effect of Daflon. Conclusion: The results show that administration of Daflon for 15 days had significant protective effect against cisplatin induced nephrotoxicity.
Cite this article:
Reham Talib Imran, Ahmed H. Jwaid. The Possible Protective effect of Daflon 500mg on Cisplatin Induce Nephrotoxicity in Experimental Rats. Research Journal of Pharmacy and Technology 2023; 16(7):3393-8. doi: 10.52711/0974-360X.2023.00561
Cite(Electronic):
Reham Talib Imran, Ahmed H. Jwaid. The Possible Protective effect of Daflon 500mg on Cisplatin Induce Nephrotoxicity in Experimental Rats. Research Journal of Pharmacy and Technology 2023; 16(7):3393-8. doi: 10.52711/0974-360X.2023.00561 Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-7-58
REFERENCE:
1. Abd MR, Hassan AF. The Ameliorative Effect of Fimasartan against Methotrexate-Induced Nephrotoxicity in Rats. Iraqi Journal of Pharmaceutical Sciences. 2022;31(1):87-94. Doi: 10.31351/vol31iss1pp87-94
2. Sushmitha A, Surpiya P, Vamsi CHK, Rajani A. Spectrum of Acute Kidney Injury and its Management in a Multispeciality Hospital Located at Hyderabad. Research J. Pharm. and Tech 2020; 13(9):4351-4356. doi: 10.5958/0974-360X.2020.00769.6
3. Ghori SS, Quddus MA, Khalid H. A Clinical Study of Acute Kidney Injury on using Antituberculosis Drugs in Geriatrics. Research J. Pharm. and Tech. 2017; 10(6): 1746-1750. doi: 10.5958/0974-360X.2017.00308.0
4. Naveen K L, Veigas GJ, Bhattacharjee A, Hegde K. Nephroprotective Properties of Natural Herbs: A Systemic Review. Asian Journal of Research in Pharmaceutical Sciences. 2022; 12(1):52-6. doi: 10.52711/2231-5659.2022.00010
5. Abhirama BR, Rajagopal SS, Nanjan M. Nephroprotective effect of ethanol extract of Biophytum sensitivum (Linn.) DC in cisplatin-induced experimental renal damage in rats. Research J. Pharm. and Tech. 2017; 10(6): 1772-1779. doi: 10.5958/0974-360X.2017.00313.4
6. Arunkumar PA, Mukund H, Radheshyam N, Belliyappa MS. Clinical Evaluation of Cisplatin Induced Nephrotoxicity Characterized By Electrolyte Disturbances. Asian J. Res. Pharm. Sci. 2011;1(4):100-104.
7. Cvitkovic E. A historical perspective on oxaliplatin: rethinking the role of platinum compounds and learning from near misses. Semin Oncol. 1998;25(2 Suppl 5):1-3.
8. Singh HP, Singh TG, Singh R. Attenuation of Cisplatin–Induced Nephrotoxicity by p-Coumaric Acid through Peroxisome Proliferator-Activated Receptor-Gamma (PPAR-γ) Agonism in male Rats. Research J. Pharm. and Tech. 2020; 13(11):5270-5276. doi: 10.5958/0974-360X.2020.00922.1
9. Ishida S, Lee J, Thiele DJ, Herskowitz I. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci U S A. 2002;99(22):14298-302. doi: 10.1073/pnas.162491399.
10. Ludwig T, Riethmüller C, Gekle M, Schwerdt G, Oberleithner H. Nephrotoxicity of platinum complexes is related to basolateral organic cation transport. Kidney Int. 2004;66(1):196-202. doi: 10.1111/j.1523-1755.2004.00720.x.
11. Seena KX, Setty MM. Protective effect of Phytochemicals against Cisplatin induced Nephrotoxicity. Research Journal of Pharmacy and Technology. 2021; 14(7):3981-6. doi: 10.52711/0974-360X.2021.00690
12. Beyer J, Rick O, Weinknecht S, Kingreen D, Lenz K, Siegert W. Nephrotoxicity after high-dose carboplatin, etoposide and ifosfamide in germ-cell tumors: incidence and implications for hematologic recovery and clinical outcome. Bone Marrow Transplant. 1997;20(10):813-9. doi: 10.1038/sj.bmt.1700980.
13. Lieberthal W, Triaca V, Levine J. Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am J Physiol. 1996;270(4 Pt 2):F700-8. doi: 10.1152/ajprenal.1996.270.4.F700.
14. Kruidering M, Van de Water B, de Heer E, Mulder GJ, Nagelkerke JF. Cisplatin-induced nephrotoxicity in porcine proximal tubular cells: mitochondrial dysfunction by inhibition of complexes I to IV of the respiratory chain. J Pharmacol Exp Ther. 1997;280(2):638-49.
15. Kawai Y, Nakao T, Kunimura N, Kohda Y, Gemba M. Relationship of intracellular calcium and oxygen radicals to Cisplatin-related renal cell injury. J Pharmacol Sci. 2006;100(1):65-72. doi: 10.1254/jphs.fp0050661.
16. Yilmaz HR, Iraz M, Sogut S, Ozyurt H, Yildirim Z, Akyol O, Gergerlioglu S. The effects of erdosteine on the activities of some metabolic enzymes during cisplatin-induced nephrotoxicity in rats. Pharmacol Res. 2004;50(3):287-90. doi: 10.1016/j.phrs.2004.03.003.
17. Bonventre JV, Weinberg JM. Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol. 2003;14(8):2199-210. doi: 10.1097/01.asn.0000079785.13922.f6.
18. Kaushal GP, Kaushal V, Hong X, Shah SV. Role and regulation of activation of caspases in cisplatin-induced injury to renal tubular epithelial cells. Kidney Int. 2001;60(5):1726-36. doi: 10.1046/j.1523-1755.2001.00026.x.
19. Meyer OC. Safety and security of Daflon 500 mg in venous insufficiency and in hemorrhoidal disease. Angiology. 1994;45(6 Pt 2):579-84. doi: 10.1177/000331979404500614.
20. Rizk SM, Sabri NA. Evaluation of clinical activity and safety of Daflon 500 mg in type 2 diabetic female patients. Saudi Pharm J. 2009;17(3):199-207. doi: 10.1016/j.jsps.2009.08.008.
21. Julius A, Vedasendiyar R, Devakannan A, Rajaraman S, Rangasamy B, Saravanan V. Effect of Hesperidin for its Anti-Proliferative Activity on Liver Cancer and Cardio Vascular Diseases. Research J. Pharm. and Tech. 2017; 10(1): 307-308. doi: 10.5958/0974-360X.2017.00062.2
22. Hoet S, Opperdoes F, Brun R, Quetin-Leclercq J. Natural products active against African trypanosomes: a step towards new drugs. Nat Prod Rep. 2004;21(3):353-64. doi: 10.1039/b311021b.
23. Chibale K. Economic drug discovery and rational medicinal chemistry for tropical diseases. Pure and Applied Chemistry. 2005;77(11): 1957-1964. doi:10.1351/pac200577111957
24. Blume J, Langenbahn H, De Champvallins M: Quantification of oedema using the volometer technique: Therapeutic application of Daflon 500 mg in chronic venous insufficiency. Phlebology 1992;7(suppl 2):37-40.
25. Bouskela E, Donyo KA, Verbeuren TJ. Effects of Daflon 500 mg on increased microvascular permeability in normal hamsters. Int J Microcirc Clin Exp. 1995;15 Suppl 1:22-6. doi: 10.1159/000179091.
26. Gilly RW, Pillion G, Frileux, C. Evaluation of a New Venoactive Micronized Flavonoid Fraction (S 5682) in Symptomatic Disturbances of the Venolymphatic Circulation of the Lower Limb: A Double-Blind, Placebo-Controlled Study. Phlebology 1994;9:67-70. Doi: 10.1177/026835559400900206
27. Unlü A, Sucu N, Tamer L, Coskun B, Yücebilgiç G, Ercan B, Gül A, Dikmengil M, Atik U. Effects of Daflon on oxidative stress induced by hindlimb ischemia/reperfusion. Pharmacol Res. 2003;48(1):11-5.
28. Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol. 2000;190(3):255-66. doi: 10.1002/(SICI)1096-9896(200002)190:3<255::AID-PATH526>3.0.CO;2-6.
29. Parks DA, Granger DN. Ischemia-reperfusion injury: a radical view. Hepatology. 1988;8(3):680-2. doi: 10.1002/hep.1840080341.
30. Seekamp A, Ward PA. Ischemia-reperfusion injury. Agents Actions Suppl. 1993;41:137-52.
31. Nardarajah D. Hesperidin-A short Review. Research J. Pharm. and Tech. 2014;7(1):78-80.
32. Alanbaki AA, AL-Mayali HM, AL-Mayali HK. Ameliorative effect of Quercetin and Hesperidin on Antioxidant and Histological Changes in the Testis of Etoposide-Induced Adult Male Rats. Research J. Pharm. and Tech 2018; 11(2):564-574. doi: 10.5958/0974-360X.2018.00105.1
33. Allameh H, Fatemi I, Malayeri AR, Nesari A, Mehrzadi S, Goudarzi M. Pretreatment with berberine protects against cisplatin-induced renal injury in male Wistar rats. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(10):1825-1833. doi: 10.1007/s00210-020-01877-3.
34. Rehman MU, Tahir M, Quaiyoom Khan A, Khan R, Lateef A, Hamiza OO, Ali F, Sultana S. Diosmin protects against trichloroethylene-induced renal injury in Wistar rats: plausible role of p53, Bax and caspases. Br J Nutr. 2013;110(4):699-710. doi: 10.1017/S0007114512005752.
35. Al-Kuraishy HM, Al-Gareeb AI, Hussien NR. Synergistic effect of berberine and pentoxifylline in attenuation of acute kidney injury. Int J Crit Illn Inj Sci. 2019;9(2):69-74. doi: 10.4103/IJCIIS.IJCIIS_85_18.
36. Khudhai AR, Al-Shawi NN. Possible protective effects of high-versus low-dose of lutein in combination with irinotecan on liver of rats: Role of oxidative stress and apoptosis. Indian J Forensic Med Toxicol. 2021;15(1):2439–45. Doi:10.37506/ijfmt.v15i1.13767
37. Widemann BC, Adamson PC. Understanding and managing methotrexate nephrotoxicity. Oncologist. 2006;11(6):694-703. doi: 10.1634/theoncologist.11-6-694.
38. Chirino YI, Sánchez-González DJ, Martínez-Martínez CM, Cruz C, Pedraza-Chaverri J. Protective effects of apocynin against cisplatin-induced oxidative stress and nephrotoxicity. Toxicology. 2008;245(1-2):18-23. doi: 10.1016/j.tox.2007.12.007.
39. Ali BH, Al Moundhri MS, Tag Eldin M, Nemmar A, Tanira MO. The ameliorative effect of cysteine prodrug L-2-oxothiazolidine-4-carboxylic acid on cisplatin-induced nephrotoxicity in rats. Fundam Clin Pharmacol. 2007;21(5):547-53. doi: 10.1111/j.1472-8206.2007.00495.x.
40. Yano T, Itoh Y, Matsuo M, Kawashiri T, Egashira N, Oishi R. Involvement of both tumor necrosis factor-alpha-induced necrosis and p53-mediated caspase-dependent apoptosis in nephrotoxicity of cisplatin. Apoptosis. 2007 Oct;12(10):1901-9. doi: 10.1007/s10495-007-0110-8.