Author(s): Manoj M. D., Anima Nanda, B. K. Nayak

Email(s): animananda72@gmail.com

DOI: 10.52711/0974-360X.2023.00523   

Address: Manoj M. D.1*, Anima Nanda2, B. K. Nayak2
1Department of Biomedical Engineering, Sathyabama Institute of Science and Technology, Deemed to be University, Chennai - 600119, India.
2Department of Botany, Kanchi Mamunivar Govt. Institute for Postgraduate Studies and Research, Puducherry - 605008, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 7,     Year - 2023


ABSTRACT:
The recent developments in the area of surface electrodes materials for biomedical devices such as ECG, EEG are unforeseeable. The role of novel materials in electrode development is highly required for futuristic applications in health and biomedical industry to fulfill the patients’ demand. The proposed project has emphasized on the uses of conductive materials Super p carbon black (SPCB) in electrodes, for enhancing the activity of surface electrodes to capture the better signal of the patients. A great challenge lies not only in fabrication of such materials but also in physical characterization of such conductive materials. In the recent era carbon based nano-materials like CNTs, Graphene, GO and rGO overruled on Ag/AgCl based on its better conductivity. The research work has focused on the electrode fabrication with a conventional slurry-based gel cast method by using Super p carbon black and polymer Ethylene Co Vinyl Acetate (EVA). Further the study has aimed on the quantitatively use of Super p carbon black conductive materials on the surface of the electrode and fictionalized it by using EVA. The electrode material was characterized by in-situ non- destructive conductivity study using the Electrochemical Impedance Spectroscopic (EIS) method. This Super p carbon black could be used directly on the surface of the electrode as inbuilt in a dry form to avoid the un-comfortableness of the patient and longevity of the electrode in various biomedical devices like ECG, EEG, etc.


Cite this article:
Manoj M. D., Anima Nanda, B. K. Nayak. Enhancing the activity of ECG Surface Electrodes with super p carbon black additive. Research Journal of Pharmacy and Technology 2023; 16(7):3183-8. doi: 10.52711/0974-360X.2023.00523

Cite(Electronic):
Manoj M. D., Anima Nanda, B. K. Nayak. Enhancing the activity of ECG Surface Electrodes with super p carbon black additive. Research Journal of Pharmacy and Technology 2023; 16(7):3183-8. doi: 10.52711/0974-360X.2023.00523   Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-7-20


REFERENCES:
1.    Maiti D, et al. Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. Front. Pharmacol. 2019 9:1401. doi: 10.3389/fphar.2018.01401.
2.    Patel, K., Singh, R., & Kim, H.-W. Carbon based-nanomaterials as an emerging platform for theranostics. Materials Horizons. 2018 doi:10.1039/c8mh00966j.
3.    Helgason R, Banavali A, Lai Y., Cohesive dry ECG sensor using silver nanowires and PDMS tuned for adhesion. Med Devices Sens. 2019; 2: e10025. https://doi.org/10.1002/mds3.10025
4.    Sekitani, T. et al. Ultraflexible organic amplifier with biocompatible gel electrodes. Nat. Commun. 2016.7:11425 doi: 10.1038/ncomms11425.
5.    Romero, F.J., et al. Inexpensive and flexible nanographene-based electrodes for ubiquitous electrocardiogram monitoring. npj Flex Electron 2019, 3 12. https://doi.org/10.1038/s41528-019-0056-2.
6.    Celik, N., et al. Graphene-Enabled Electrodes for Electrocardiogram Monitoring. Nanomaterials (Basel, Switzerland), 2016 6(9), 156. https://doi.org/10.3390/nano6090156.
7.    Hallfors, Nicholas et al. Reduced Graphene Oxide for the Design of Electrocardiogram Sensors: Current Status and Perspectives: Design and Implementation. 2019.doi:10.1007/978-3-319-93100-5_1.
8.    Yao.S. and Zhu.Y., Nanomaterial-Enabled Dry Electrodes for Electrophysiological Sensing: A Review. JOM, 2016.4(68), doi: 10.1007/s11837-016-1818-0.
9.    Schneider, C., et al. Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems. Journal of Controlled Release, 262, 284–295. 2017. doi: 10.1016/j.jconrel.2017.08.
10.    Cho, I., et al. A comparative investigation of carbon black (Super-P) and vapor-grown carbon fibers (VGCFs) as conductive additives for lithium-ion battery cathodes. RSC Advances, 2015. 5(115), 95073–95078. doi:10.1039/c5ra19056h.
11.    B. Peng, et al. The electrochemical performance of super P carbon black in reversible Li/Na ion uptake, Sci.China-Phys. Mech. Astron. 2017. 60, 064611, doi: 10.1007/s11433-017-9022-y.
12.    Bredar, A. R. C., et al. Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications. ACS Applied Energy Materials. 2020. doi:10.1021/acsaem.9b01965.
13.    Hongliang Li, et al., Electrochemical Impedance Spectroscopy Study on Using Li10GeP2S12 Electrolyte for All-Solid-State Lithium Batteries Int. J. Electrochem. Sci., 2021. 16 doi: 10.20964/2021.02.33.
14.    I.O. Salyer, A.S. Kenyon, J. Structure and Property Relationships in Ethylene Vinyl Acetate            Copolymers.  Polym. Sci. A 1 (9) 1971 3083–3103.
15.    Liu S, et al. Understanding the Conductive Carbon Additive on Electrode/Electrolyte Interface Formation in Lithium-Ion Batteries via in situ Scanning Electrochemical Microscopy. Front. Chem. 2020. 8:114. doi: 10.3389/fchem.2020.00114.
16.    Yokoshima, Tokihiko; et al. Application of Electrochemical Impedance Spectroscopy to Ferri/Ferrocyanide Redox Couple and Lithium-Ion Battery Systems Using a Square Wave as Signal Input. Electrochimica Acta, 2015, S0013468615303339–. doi: 10.1016/j.electacta.2015.08.083
17.    Zishou Zhang, et al. Conductive membrane of EVA filled by carbon black for flexible energy-storage devices J. Mater. Chem. A, 2013, 1,505. doi: 10.1039/c2ta00650b.
18.    A. Arsac, C. Carrot, J. Guilet, Determination of primary relaxation temperatures and melting points of ethylene vinyl acetate copolymers. J. Therm. Anal. Calorim. 61. 2000. 681–685.
1.    19.    Van Man Tran et al. Capacitance behavior of nanostructured ε-MnO2/C composite electrode using different                 carbons matrix. Adv. Nat. Sci: Nanosci. Nanotechnol. 2014. 5 025005 doi:10.1088/2043-6262/5/2/025005.
19.    Elavenil S., Vijayakumar. Seismic Behaviour and Pushover Analysis of Steel Frames. Research J. Engineering and Tech. 5(3): July-Sept. 2014 page 128-134.
20.    Yogesh R. Mahulkar, C.M. Sedani. Design Aspects to Improve the Cooling Efficiency of Equipments Using Miniature Loop Heat Pipe: A Literature Review. Research J. Engineering and Tech. 6(3): July- Sept., 2015 page 357-368.
21.    Harkamal Preet Singh. Influence of ambient air temperature on the Coefficient of performance of a Refrigerator. Research J. Engineering and Tech. 7(1): Jan. -Mar., 2016 page 24-28.
22.    Swati Jain, Vikas Kumar Jain, Sunil Kumar Kashyap, Sanjay Kumar. Academic Performance Evaluator over the Cluster-L2 Metric. Research J. Engineering and Tech. 2017; 8(1): 01-03.
23.    Ankita Rathore, Anand Rajavat. Result Evaluation of Bug Forecasting Model in Software Engineering. Research J. Engineering and Tech. 2017; 8(3): 208-212.
24.    Srikanth Rao D., Gopikrishna N., Manoj Kumar J. Evaluation of Mode-I Fracture Toughness for Composite Laminate - Epoxy-Glass Fiber. Research J. Engineering and Tech. 2018;9(1): 70-74.
25.    Sridhar B. Performance Evaluation of Different Encryption Techniques. Research J. Engineering and Tech. 2018; 9(3): 227-232.
26.    Devender V., Mahesh V., Gopikrishna N. Evaluation of Young’s Modulus and Poison’s Ratio using Bulge Test. Research J. Engineering and Tech. 2018;9(1): 75-84.
27.    Radhakrishna L., Gopikrishna N., Narsaiah S R V. Design and Manufacturing of Gear Trains. Research J. Engineering and Tech. 2017; 8(4): 419-430.
28.    Namrata Jain, Priti Shukla, Rajesh Chakrawarti. Result Evaluation Approach of Effectual Testing for Web Service in Utility Domain. Research J. Engineering and Tech. 2017; 8(2): 115-121.
29.    Bing-Ang Mei, et al. Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices, J. Phys. Chem. C.  2018, 122, 1, 194–206 https://doi.org/10.1021/acs.jpcc.7b10582.


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available