Author(s):
Shivam Bajpai, Sundaram Singh
Email(s):
sbajpai7@gmail.com
DOI:
KEYWORDS: Quinoxaline derivatives, Dalton’s lymphoma cells, Viability, Anti-cancer potential, Apoptosis.
Address:
Shivam Bajpai1*, Sundaram Singh2
1Department of Chemistry, Bipin Bihari College, Affiliated To Bundelkhand University, Jhansi- 284001, U.P., India.
2Department of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi – 221 005, U.P., India.
*Corresponding Author
Published In:
Volume - 16,
Issue - 7,
Year - 2023
ABSTRACT:
ABSTRACT:
Indole based quinoxaline derivatives (2a-f) were synthesized and the therapeutic potential of the synthesized compounds (2a-f) was investigated against Dalton’s Lymphoma (DL) cells. It was observed that treatment of DL cells with quinoxaline derivatives (2a-f) showed significant decrease in cell viability, altered morphology, nuclear disintegration and DNA fragmentation into low molecular weight DNA fragments and thus characteristic of apoptosis. In this view, the synthesized compounds may be used as potential therapeutic regimen to treat this type of cancer.
Cite this article:
Shivam Bajpai, Sundaram Singh. Anti Cancer Potential of some Indole based Quinoxaline Derivatives against Dalton’s Lymphoma (DL) cells. Research Journal of Pharmacy and Technology 2023; 16(7):3165-1. doi: KEYWORDS: Quinoxaline derivatives, Dalton’s lymphoma cells, Viability, Anti-cancer potential, Apoptosis.
Cite(Electronic):
Shivam Bajpai, Sundaram Singh. Anti Cancer Potential of some Indole based Quinoxaline Derivatives against Dalton’s Lymphoma (DL) cells. Research Journal of Pharmacy and Technology 2023; 16(7):3165-1. doi: KEYWORDS: Quinoxaline derivatives, Dalton’s lymphoma cells, Viability, Anti-cancer potential, Apoptosis. Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-7-17
REFERENCES:
1. Houlihan WJ, Remers W A, Brown RK., Indoles: Part I. Wiley: 1992, New York.
2. Jairaj K. Dawle, K. I. Momin, S R Mathapati, A. S. Bondge, Suryawanshi V. B.. Green Synthesis of Quinoxaline derivatives. Asian J. Research Chem. 2016; 9(11): 611-614. DOI: 10.5958/0974-4150.2016.00083.3
3. Pravin T. Tryambake. SiO2-FeCl3 Mediated a Simple and Efficient Procedure for the Synthesis of Quinoxalines at Room Temperature. Asian J. Research Chem. 2017; 10(6):827-831. DOI: 10.5958/0974-4150.2017.00138.9
4. Nikam SS, Cordon JJ, Ortwine DF, Heimbach TH, Blackburn AC, Vartanian MG, Nelson CB, Schwarz RD, Boxer PA, Rafferty MF. Design and synthesis of novel quinoxaline-2, 3-dione AMPA/GlyN receptor antagonists: amino acid derivatives. Journal of Medicinal Chemistry. 1999 Jun 17;42(12):2266-71. DOI: 10.1021/jm980455n
5. Veroni I, Mitsopoulou CA, Lahoz FJ. Synthesis, spectroscopic properties and crystal structure of mononuclear tricarbonylrhenium (I) chloride complexes carrying 6-functionalised quinoxalines. Journal of Organometallic Chemistry. 2008 Jul 1;693(14):2451-7. doi.org/10.1016/j.jorganchem.2008.04.035
6. Patidar AK, Jeyakandan M, Mobiya AK, Selvam G. Exploring potential of quinoxaline moiety. International Journal of PharmTech Research. 2011; Jan- Mar 3(1):386-92.
7. Shintre SA, Ramjugernath D, Islam MS, Mopuri R, Mocktar C, Koorbanally NA. Synthesis, in vitro antimicrobial, antioxidant, and antidiabetic activities of thiazolidine–quinoxaline derivatives with amino acid side chains. Medicinal Chemistry Research. 2017 Sep;26(9):2141-51. DOI:10.1007/s00044-017-1922-x
8. Ghanbarimasir Z, Bekhradnia A, Morteza-Semnani K, Rafiei A, Razzaghi-Asl N, Kardan M. Design, synthesis, biological assessment and molecular docking studies of new 2-aminoimidazole-quinoxaline hybrids as potential anticancer agents. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2018 Apr 5;194:21-35. doi: 10.1016/j.saa.2017.12.063.
9. Charoo S. Garg, Jimit S. Patel, Dhrubo Jyoti Sen. Synthesis of Novel Substituted 3,4-Dihydroquinoxaline Derivatives as Antimicrobial Agents. Asian J. Research Chem. 5(7): July, 2012; Page 819-826.
10. Guillon J, Grellier P, Labaied M, Sonnet P, Léger JM, Déprez-Poulain R, Forfar-Bares I, Dallemagne P, Lemaître N, Péhourcq F, Rochette J. Synthesis, antimalarial activity, and molecular modeling of new pyrrolo [1, 2-a] quinoxalines, bispyrrolo [1, 2-a] quinoxalines, bispyrido [3, 2-e] pyrrolo [1, 2-a] pyrazines, and bispyrrolo [1, 2-a] thieno [3, 2-e] pyrazines. Journal of medicinal chemistry. 2004 Apr 8;47(8):1997-2009. doi.org/10.1021/jm0310840
11. Badran MM, Abouzid KA, Hussein MH. Synthesis of certain substituted quinoxalines as antimicrobial agents (part II). Archives of Pharmacal Research. 2003 Feb;26(2):107-13. doi: 10.1007/BF02976653.
12. Tandon VK, Yadav DB, Maurya HK, Chaturvedi AK, Shukla PK. Design, synthesis, and biological evaluation of 1, 2, 3-trisubstituted-1, 4-dihydrobenzo [g] quinoxaline-5, 10-diones and related compounds as antifungal and antibacterial agents. Bioorganic & Medicinal Chemistry. 2006 Sep 1;14(17):6120-6. doi.org/10.1016/j.bmc.2006.04.029
13. Jaso A, Zarranz B, Aldana I, Monge A. Synthesis of new 2-acetyl and 2-benzoyl quinoxaline 1, 4-di-N-oxide derivatives as anti-Mycobacterium tuberculosis agents. European Journal of Medicinal Chemistry. 2003 Sep 1;38(9):791-800. doi: 10.1016/s0223-5234(03)00137-5.
14. Guillon J, Forfar I, Mamani-Matsuda M, Desplat V, Saliège M, Thiolat D, Massip S, Tabourier A, Léger JM, Dufaure B, Haumont G. Synthesis, analytical behaviour and biological evaluation of new 4-substituted pyrrolo [1, 2-a] quinoxalines as antileishmanial agents. Bioorganic & Medicinal Chemistry. 2007 Jan 1;15(1):194-210. doi: 10.1016/j.bmc.2006.09.068.
15. Sarges R, Howard HR, Browne RG, Lebel LA, Seymour PA, Koe BK. 4-Amino [1, 2, 4] triazolo [4, 3-a] quinoxalines. A novel class of potent adenosine receptor antagonists and potential rapid-onset antidepressants. Journal of Medicinal Chemistry. 1990 Aug;33(8):2240-54. 10.1021/jm00170a031
16. B. Edwin Jose, P. Muralidharan. In Vitro Anti Cancer Activity of Leaf Extracts of Azima tetracantha Lam against Tryphan Blue Exclusion Method by using Dal Cell Lines. Res. J. Pharmacology and Pharmacodynamics.2019; 11(1): 23-26.
17. Ries UJ, Priepke HW, Hauel NH, Handschuh S, Mihm G, Stassen JM, Wienen W, Nar H. Heterocyclic thrombin inhibitors. Part 2: quinoxalinone derivatives as novel, potent antithrombotic agents. Bioorganic & Medicinal Chemistry Letters. 2003 Jul 21;13(14):2297-302. doi.org/10.1016/S0960-894X(03)00443-8
18. Wendt GR, Ledig KW U.S. Patent, 3,431,262, Chem. Abstr.,1969,70,106512.
19. Baburao Bhukya, Harikiran Lingabathula, Narsimhareddy Yellu. Evaluation of Anti Cancer Activity of Kydia calycina Roxb. Leaf Extract on Different Cancer Cell Lines. Res. J. Pharmacognosy and Phytochem. 2017; 9(4): 197-202. DOI: 10.5958/0975-4385.2017.00036.X
20. Vinyas Mayasa, Vijay Kumar Rasal, Banappa S Unger, Kartikeyan Subbarayan. Tolerability assessment and anti cancer activity of the partially purified protease inhibitors from Soyabean (Glycine max) orally administered to rats. Research J. Pharm. and Tech. 2016; 9(7):925-928. 10.5958/0974-360X.2016.00177.3
21. Ramasamy Arivukkarasu, Aiyalu Rajasekaran, Vishal Kankaria, Madesh Selvam. In Vitro Anti Cancer Activity and detection of Quercetin, Apigenin in Methanol extract of Euphorbia nivulia Buch.-Ham. By HPTLC Technique. Research J. Pharm. and Tech. 2017; 10(8): 2637-2640. DOI: 10.5958/0974-360X.2017.00468.1
22. Nachiket S Dighe, Shashikant R Pattan, Deepak S Musmade, Abhijeet N Merekar, Manisha S Kedar, Deepak K Thakur, Pratik V Patel. Recent Synthesis of Marine Natural Products with Anticancer Activity: An Overview. Research J. Science and Tech. 2009; 1(2): 63-70.
23. S. Karthick Raja Namasivayam, D Jayakumar, V. Ramesh Kumar, R.S Arvind Bharani. Anti Bacterial and Anti Cancerous Biocompatible Silver Nanoparticles Synthesised from the Cold Tolerant Strain of Spirulina platensis. Research J. Pharm. and Tech. 7(12): Dec. 2014; Page 1404-1412. DOI: 10.5958/2321-5836.2020.00010.5
24. Ramasamy Arivukkarasu, Aiyalu Rajasekaran, Vishal Kankaria, Madesh Selvam. In Vitro Anti Cancer Activity and detection of Quercetin, Apigenin in Methanol extract of Euphorbia nivulia Buch.-Ham. By HPTLC Technique. Research J. Pharm. and Tech. 2017; 10(8): 2637-2640. DOI: 10.5958/0974-360X.2017.00468.1
25. B. Edwin Jose, P. Muralidharan. In Vitro Anti Cancer Activity of Leaf Extracts of Azima tetracantha Lam against Tryphan Blue Exclusion Method by using Dal Cell Lines. Res. J. Pharmacology and Pharmacodynamics. 2019; 11(1): 23-26. DOI: 10.5958/2321-5836.2019.00005.3
26. Bajpai S, Singh S, Srivastava V. Rutile phase nanoTiO2 as an effective heterogeneous catalyst for condensation reaction of isatin derivatives with 1, 2-diaminobenzene under solvent free conditions: A greener “NOSE” approach. Arabian Journal of Chemistry. 2019 Nov 1;12(7):1168-75. doi.org/10.1016/j.arabjc.2014.11.037