Author(s): Gundawar Ravi, Padmini Iriventi, Riyaz Ali M. Osmani


DOI: 10.52711/0974-360X.2023.00502   

Address: Gundawar Ravi1*, Padmini Iriventi 2, Riyaz Ali M. Osmani3
1Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India.
2Department of Pharmaceutics, MLR Institute of Pharmacy, Hyderabad - 500043, TS, India.
3Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru - 570015, Karnataka, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 6,     Year - 2023

Global consumption and natural resistance to degradation have increased in the case of plastic and polymers. Their accumulation in the environment is of increasing concern. Currently available plastics are mostly produced from petrochemical products, but there is a growing demand for eco-friendly polymers. The use of bio-based polymers, which are produced from renewable resources, and biodegradable polymers, which are degraded in the environment, will lead to a more sustainable society and help us solve global environmental and waste management problems. Biodegradable materials are used in packaging, agriculture, medicine, and other areas. In recent years there has been an increase in interest in biodegradable polymers. The following review presents an overview of the different biodegradable polymers that are currently being used and their properties, as well as new developments in their synthesis and applications in drug delivery.

Cite this article:
Gundawar Ravi, Padmini Iriventi, Riyaz Ali M. Osmani. Biodegradable Polymers: A Novel Stride in Drug Delivery and Therapeutics. Research Journal of Pharmacy and Technology 2023; 16(6):3047-3. doi: 10.52711/0974-360X.2023.00502

Gundawar Ravi, Padmini Iriventi, Riyaz Ali M. Osmani. Biodegradable Polymers: A Novel Stride in Drug Delivery and Therapeutics. Research Journal of Pharmacy and Technology 2023; 16(6):3047-3. doi: 10.52711/0974-360X.2023.00502   Available on:

1.    Yogita RI, Nayana VP, Puja S, AnitaSG. A Comprehensive Review on Biodegradable Polymers. Asian J. Res. Pharm. Sci. 2016;6(2):65-76.doi: 10.5958/2231-5659.2016.00010.2.   
2.    Colnik M, Knez-Hrncic M, Skerget M, Knez . Biodegradable polymers, current trends of research and their applications: A review. Chemical Industry and Chemical Engineering Quarterly. 2020;26(4):401-18.doi: 10.2298/CICEQ191210018C.
3.    NavinchandraGS. Biodegradable and Biocompatible Polymer Composites:Processing, Properties and Applications. Woodhead Publishing. 2017.
4.    Maja C, Masa KM, Mojca S, Zeljko K. Biodegradable polymers, current trends of research and their applications, a review.Chemical Industry and Chemical Engineering Quarterly. 2020; 26: 1-18. Doi: 10.2298/CICEQ191210018C
5.    Narayanan TS, Park IS, Lee MH. Surface modification of magnesium and its alloys for biomedical applications: opportunities and challenges. Surface Modification of Magnesium and its Alloys for Biomedical Applications. 2015; 1:29-87.
6.    Ravindra VG, Das A, Mahanwar P, Gadekar P. Starch-based bio-plastics: the future of sustainable packaging. Open Journal of Polymer Chemistry. 2018; 8(2): 21-33.doi: 10.4236/ojpchem.2018.82003
7.    Mendes JFet. al.,Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate Polymers. 2016; 137: 452-8.doi: 10.1016/j.carbpol.2015.10.093
8.    Panchal SS, Vasava DV. Biodegradable polymeric materials: synthetic approach. ACS omega. 2020; 5(9): 4370-9.doi: 10.1021/acsomega.9b04422
9.    George A, Shah PA, Shrivastav PS. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int J Pharms. 2019; 561: 244-64.doi: 10.1016/j.ijpharm.2019.03.011.
10.    Jana P, Shyam M, Singh S, Jayaprakash V, Dev A. Biodegradable polymers in drug delivery and oral vaccination. European Polymer Journal. 2021; 142: 110155. doi: 10.1016/j.eurpolymj.2020.110155
11.    Vlasova GM, Makarevich AV, Pinchuk LS. Biodegradable films based on thermoplastics. Reports of the National Academy of Sciences of Belarus. 2000; 44(6): 100-3.
12.    Legonkova O, Melitskova A, Peshekhonova A. Biodegradation is the future. Container and packaging. 2003; 2: 62-3.
13.    Vikhareva IN, Buylova EA, Yarmuhametova GU, Aminova GK, Mazitova AK. An overview of the main trends in the creation of biodegradable polymer materials. Journal of chemistry. 2021; 1: 1-15.doi: g/10.1155/2021/5099705.
14.    Vroman I, Tighzert L. Biodegradable polymers. Materials. 2009; 2(2) :307-44.doi: 10.3390/ma2020307
15.    Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE. Polymer biodegradation: Mechanisms and estimation techniques–A review. Chemosphere. 2008; 73(4) :429-42.doi:10.1016/j.chemosphere.2008.06.064
16.    Rajeev K, Nripendra S, Ritu S. An Introduction of Biodegradable Polymers, Modes of Biodegradation and Designing of Biodegradable Polymers. Research J. Pharm. Tech. 2017;10(2):625-40. 10.5958/0974-360X.2017.00121.4
17.    Gunatillake P, Mayadunne R, Adhikari R. Recent developments in biodegradable synthetic polymers. Biotechnology Annual Review. 2006; 12: 301-347. 10.1016/S1387-2656(06)12009-8
18.    Luckachan GE, Pillai CK. Biodegradable polymers-a review on recent trends and emerging perspectives. Journal of Polymers and The Environment. 2011; 19(3): 637-76. 10.1007/s10924-011-0317-1
19.    Joshi JR, Patel RP. Role of biodegradable polymers in drug delivery. Int J Curr Pharm Res. 2012; 4(4): 74-81.
20.    Pillai O, Panchagnula R. Polymers in drug delivery. Current Opinion in Chemical Biology. 2001; 5(4): 447-51.doi: 10.1016/s1367-5931(00)00227-1
21.    Ashok KP. Casein Composites as Alternative Biodegradable Polymers. Research J. Pharm. Tech. 2018;11(1):17-22. doi: 10.5958/0974-360X.2018.00003.3
22.    Herrlich S, Spieth S, Messner S, Zengerle R. Osmotic micropumps for drug delivery. Adv Drug Deliv Rev. 2012; 64(14): 1617-27.doi: 10.1016/j.addr.2012.02.003
23.    Leontieva OA and Sukhareva LA.Thousand and One Polymers from Biostable to Biodegradable, Radiosoft, Moscow, Russia, 2007.
24.    Varlamov VP, Ilina AV, Shagdarova BT, Lunkov AP, Mysyakina IS. Chitin/Chitosan and Its Derivatives: Fundamental Problems and Practical Approaches. Biochemistry. 2020; 85: S154-76.doi: 10.1134/S0006297920140084
25.    Shen L, Worrell E, Patel M. Present and future development in plastics from biomass. Biofuels, Bioproducts and Biorefining.  2010; 4(1): 25-40. doi:10.1002/bbb.189
26.    Missoum K, Sadocco P, Causio J, Belgacem MN, Bras J. Antibacterial activity and biodegradability assessment of chemically grafted nanofibrillated cellulose. Materials Science and Engineering: C. 2014; 45: 477-83.doi: 10.1016/j.msec.2014.09.037.
27.    Sirviö JA, Visanko M, Ukkola J, Liimatainen H. Effect of plasticizers on the mechanical and thermomechanical properties of cellulose-based biocomposite films. Industrial Crops and Products. 2018; 122: 513-21.
28.    ChayapaW,Jutarat P. Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate Polymers. 2019; 123: 657-63.doi: 10.1016/j.ijbiomac.2018.11.083
29.    Czech Z, Wilpiszewska K, Tyliszczak B, Jiang X, Bai Y, Shao L. Biodegradable self-adhesive tapes with starch carrier. International Journal of Adhesion and Adhesives. 2013; 44: 195-9. 10.1016/j.ijadhadh.2013.03.002
30.    Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME. Essentials of Glycobiology, Cold Spring Harbor Laboratory Press, NewYork, USA, 3rd Edition, 2017; 823.
31.    Rogovina SK, Aleksanyan L, Vladimirov E, Prut N, Ivanushkina, Berlin A. Development of novel biodegradable polysaccharide-based composites and investigation of their structure and properties. Journal of Polymers and the Environment. 2018; 26(4); 1727–36.
32.    Yu L, Dean K, Li L. Polymer blends and composites from renewable resources. Progress in Polymer Science. 2006; 31(6): 576-602. doi:10.1016/j.progpolymsci.2006.03.002
33.    Rabotyagova OS, Cebe P, Kaplan DL. Protein-based block copolymers. Biomacromolecules. 2011; 12(2):269-89.doi: 10.1021/bm100928x
34.    Oppermann-Sanio FB, Steinbüchel A. Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften. 2002; 89(1): 11-22.doi: 10.1007/s00114-001-0280-0.
35.    Ko YH, Gross RA. Effects of glucose and glycerol on γ‐poly (glutamic acid) formation by Bacillus licheniformis ATCC 9945a. BiotechnolBioeng. 1998; 57(4): 430-7.doi: 10.1002/(sici)1097-0290(19980220)57:4<430::aid-bit6>;2-n.
36.    Priyanka U, Abhishek N. Biodegradable Plastic – A Potential Substitute for Synthetic Polymers. Research J. Engineering Tech. 2014;5(3):158-65.
37.    Shih L, Van YT. The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresource Technology. 2001; 79(3): 207-25. 10.1016/s0960-8524(01)00074-8
38.    John Wiley & Sons, Encyclopedia of Polymer Sceince and Technology, John Wiley & Sons Inc, Hoboken, NJ, USA, 2005.
39.    Chen GQ, Patel MK. Plastics derived from biological sources: present and future: a technical and environmental review. Chemical Reviews. 2012; 112(4): 2082-99.
40.    Balaji AB, Pakalapati H, Khalid M, Walvekar R, Siddiqui H. Natural and synthetic biocompatible and biodegradable polymers. Materials Science, Biology. 2018:3-32. DOI:10.1016/B978-0-08-100970-3.00001-8
41.    Hunsen M, Abul A, Xie W, Gross R. Humicolainsolenscutinase-catalyzed lactone ring-opening polymerizations: kinetic and mechanistic studies. Biomacromolecules. 2008; 9(2): 518-22.doi: 10.1021/bm701269p.
42.    Ma J, Li Q, Song B, Liu D, Zheng B, Zhang Z, Feng Y. Ring-opening polymerization of ɛ-caprolactone catalyzed by a novel thermophilic esterase from the archaeon Archaeoglobusfulgidus. Journal of Molecular Catalysis B: Enzymatic. 2009; 56(2-3): 151-7.
43.    Kerep P, Ritter H. Influence of microwave irradiation on the lipase‐catalyzed ring‐opening polymerization of ε‐caprolactone. Macromolecular Rapid Communications. 2006; 27(9): 707-10.doi: 10.1002/marc.200500781
44.    Gumel AM, Annuar MS, Chisti Y, Heidelberg T. Ultrasound assisted lipase catalyzed synthesis of poly-6-hydroxyhexanoate. UltrasonicsSonochemistry. 2012; 19(3): 659-67.doi: 10.1016/j.ultsonch.2011.10.016
45.    Jérôme C, Lecomte P. Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Advanced Drug Delivery Reviews. 2008; 60(9): 1056-76.doi: 10.1016/j.addr.2008.02.008
46.    Babli T, Vinay P, Mahendra SA, Pravin K. Natural and Synthetic Polymers for Colon Targeted Drug Delivery. Asian J. Pharm. Tech. 2016;6(1):35-44.doi: 10.5958/2231-5713.2016.00006.4
47.    Xia XL, Liu WT, Tang XY, Shi XY, Wang LN, He SQ, Zhu CS. Degradation behaviors, thermostability and mechanical properties of poly (ethylene terephthalate)/polylactic acid blends. Journal of Central South University. 2014; 21(5): 1725-32. 10.1021/acsomega.8b01353.
48.    Lu Y, Schmidt C, Beuermann S. Fast Synthesis of High‐Molecular‐Weight Polyglycolide Using Diphenyl Bismuth Bromide as Catalyst. Macromolecular Chemistry and Physics. 2015; 216(4): 395-9.10.1002/macp.201400474
49.    Schwarz K, Epple M. A detailed characterization of polyglycolide prepared by solid‐state polycondensation reaction. Macromolecular Chemistry and Physics. 1999; 200(10): 2221-9.10.1002/(SICI)1521-3935(19991001)200:10<2221::AID-MACP2221>3.0.CO;2-Q
50.    Shen K, Yang SL. Preparation of high-molecular-weight poly (glycolic acid) by direct melt polycondensation from glycolic acid. Advanced Materials Research. Trans Tech Publications Ltd. 2013; 821: 1023-6.
51.    Sato H, Kobayashi F, Ichikawa Y, Oishi Y. Synthesis and characterization of polyglycolic acid via sequential melt-solid ring-opening polymerization of glycolide. 2012; 69(2): 60-70.
52.    Takahashi K, Taniguchi I, Miyamoto M, Kimura Y. Melt/solid polycondensation of glycolic acid to obtain high-molecular-weight poly (glycolic acid). Polymer. 2000; 41(24): 8725-8728.doi: 0.1016/S0032-3861(00)00282-2
53.    Chujo K, Kobayashi H, Suzuki J, Tokuhara S, Tanabe M. Ring‐opening polymerization of glycolide. Die MakromolekulareChemie: Macromolecular Chemistry and Physics. 1967; 100(1): 262-6.doi: 10.1002/macp.1990.021910808
54.    Lu Y, Schmidt C, Beuermann S. Fast Synthesis of High‐Molecular‐Weight Polyglycolide Using Diphenyl Bismuth Bromide as Catalyst. Macromolecular Chemistry and Physics. 2015; 216(4): 395-9.doi: 10.1002/macp.201400474.
55.    Amine H, Karima O, El Amine BM, Belbachir M, Meghabar R. Cationic ring opening polymerization of glycolide catalysed by a montmorillonite clay catalyst. Journal of Polymer Research. 2005; 12(5): 361-5.
56.    Kumar N, Langer RS, Domb AJ. Polyanhydrides: an overview. Advanced drug delivery reviews. 2002; 54(7): 889-910.doi: 10.1016/s0169-409x(02)00050-9.
57.    Göpferich A, Tessmar J. Polyanhydride degradation and erosion. Adv Drug Deliv Rev. 2002; 54(7): 911-31.doi: 10.1016/s0169-409x(02)00051-0.
58.    Sung YK, Kim SW. Advances in Biodegradable Poymers for Drug Delivery Systems. Korea Polymer Journal. 2000; 8(5): 199-208.
59.    Pfeifer BA, Burdick JA, Little SR, Langer R. Poly (ester-anhydride): poly (β-amino ester) micro-and nanospheres: DNA encapsulation and cellular transfection. International journal of pharmaceutics. 2005; 304(1-2): 210-9.doi: 10.1016/j.ijpharm.2005.08.001.
60.    Oju J, Kinam P. Biodegradable Polymers for Drug Delivery Systems. Encyclopedia of Surface and Colloid Science. 2009;1(1):1-15. doi: 10.1081/E-ESCS-120044929
61.    Utracki LA, Shi GH. Compounding polymer blends. Polymer blends handbook. 2003; 2nd ed: pp. 577.
62.    Okamoto M, Inoue T. Reactive processing of polymer blends: analysis of the change in morphological and interfacial parameters with processing. Polymer Engineering & Science. 1993; 33(3): 175-82.doi: 10.1002/pen.760330308
63.    Utracki LA. Polymer blends handbook. Kluwer Academic Publishers, Netherlands. 2003; 2nded: pp. 547–576.
64.    Bettinger CJ, Bruggeman JP, Borenstein JT, Langer RS. Amino alcohol-based degradable poly (ester amide) elastomers. Biomaterials. 2008; 29(15): 2315-25.doi: 10.1016/j.biomaterials.2008.01.029
65.    Jain RA. The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide)(PLGA) devices. Biomaterials. 2000; 21(23): 2475-90.doi: 10.1016/s0142-9612(00)00115-0.
66.    Bhatia S. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. Natural Polymer Drug Delivery Systems. Springer. 2016; 1; 33-93.
67.    Racoviţă S, Vasiliu S, Popa M, Luca C. Polysaccharides based on micro-and nanoparticles obtained by ionic gelation and their applications as drug delivery systems. Revue Roumaine de Chimie. 2009; 54(9): 709-18.
68.    Patil JS, Kamalapur MV, Marapur SC, Kadam DV. Ionotropic gelation and polyelectrolyte complexation: the novel techniques to design hydrogel particulate sustained, modulated drug delivery system: a review. Digest Journal of Nanomaterials and Biostructures. 2010; 5(1): 241-8.
69.    Skorik YA, Golyshev AA, Kritchenkov AS, Gasilova ER, Poshina DN, Sivaram AJ, Jayakumar R. Development of drug delivery systems for taxanes using ionic gelation of carboxyacyl derivatives of chitosan. Carbohydrate Polymers. 2017; 162: 49-55.
70.    Ji N, Hong Y, Gu Z, Cheng L, Li Z, Li C. Fabrication and characterization of complex nanoparticles based on carboxymethyl short chain amylose and chitosan by ionic gelation. Food & function. 2018; 9(5): 2902-12.doi: 10.1039/C8FO00238J
71.    Yang Y, Chen Q, Lin J, Cai Z, Liao G, Wang K, Bai L, Zhao P, Yu Z. Recent advance in polymer based microspheric systems for controlled protein and peptide delivery. Current medicinal chemistry. 2019; 26(13): 2285-96.doi: 10.2174/0929867326666190409130207
72.    Deshmukh R, Wagh P, Naik J. Solvent evaporation and spray drying technique for micro-and nanospheres/particles preparation: A review. Drying Tech. 2016; 34(15): 1758-72.doi: 10.1080/07373937.2016.1232271
73.    Arrighi A, Marquette S, Peerboom C, Denis L, Goole J, Amighi K. Development of PLGA microparticles with high immunoglobulin G-loaded levels and sustained-release properties obtained by spray-drying a water-in-oil emulsion. Int JPharm. 2019; 566: 291-8. doi:10.1016/j.ijpharm.2019.05.070
74.    Arpagaus C. PLA/PLGA nanoparticles prepared by nano spray drying. JPharm Investigation. 2019; 49(4): 405-26.doi: 10.1007/s40005-019-00441-3
75.    Wu XS. Preparation, characterization, and drug delivery applications of microspheres based on biodegradable lactic/glycolic acid polymers. Encyclopedic handbook of biomaterials and bioengineering. 1995: 1-41.
76.    Saravanan M, Rao KP. Pectin–gelatin and alginate–gelatin complex coacervation for controlled drug delivery: Influence of anionic polysaccharides and drugs being encapsulated on physicochemical properties of microcapsules. Carbohydrate Polymers. 2010; 80(3): 808-16.doi: 10.1016/j.carbpol.2009.12.036
77.    Kızılbey K. Optimization of rutin-loaded PLGA nanoparticles synthesized by single-emulsion solvent evaporation method. ACS Omega. 2019; 4(1): 555-62.doi: 10.1021/acsomega.8b02767
78.    Ospina-Villa JD, Gómez-Hoyos C, Zuluaga-Gallego R, Triana-Chávez O. Encapsulation of proteins from Leishmania panamensis into PLGA particles by a single emulsion-solvent evaporation method. JMicrobiol Methods. 2019;162:1-7.doi: 10.1016/j.mimet.2019.05.004.
79.    Rachmawati H, Yanda YL, Rahma A, Mase N. Curcumin-loaded PLA nanoparticles: formulation and physical evaluation. Scientia Pharmaceutica. 2016; 84(1): 191-202.doi: 10.3797/scipharm.ISP.2015.10
80.    Zhang Y, Fei S, Yu M, Guo Y, He H, Zhang Y, Yin T, Xu H, Tang X. Injectable sustained release PLA microparticles prepared by solvent evaporation-media milling technology. Drug Dev Ind Pharm. 2018; 44(10): 1591-7.doi: 10.1080/03639045.2018.1483382.
81.    Abbaspoor S, Ashrafi A, Salehi M. Synthesis and characterization of ethyl cellulose micro/nanocapsules using solvent evaporation method. Colloid and Polymer Science. 2018; 296(9): 1509-14.doi: 10.1007/s00396-018-4371-2
82.    Lambert G, Fattal E, Couvreur P. Nanoparticulate systems for the delivery of antisense oligonucleotides. Adv Drug Deliv Rev. 2001; 47(1): 99-112.doi: 10.1016/s0169-409x(00)00116-2.
83.    Allémann E, Leroux JC, Gurny R, Doelker E. In vitro extended-release properties of drug-loaded poly (DL-lactic acid) nanoparticles produced by a salting-out procedure. Pharm Res. 1993; 10(12): 1732-7.doi: 10.1023/a:1018970030327
84.    Van de Ven H, Vermeersch M, Vandenbroucke RE, Matheeussen A, Apers S, Weyenberg W, De Smedt SC, Cos P, Maes L, Ludwig A. Intracellular drug delivery in Leishmania-infected macrophages: evaluation of saponin-loaded PLGA nanoparticles. J Drug Target. 2012; 20(2): 142-54.doi: 10.3109/1061186X.2011.595491.
85.    Allémann E, Gurny R, Doelker E. Preparation of aqueous polymeric nanodispersions by a reversible salting-out process: influence of process parameters on particle size. International journal of pharmaceutics. 1992; 87(1-3): 247-53.doi: 10.1016/0378-5173(92)90249-2
86.    Quintanar-Guerrero D, Allémann E, Fessi H, Doelker E. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm. 1998; 24(12): 1113-28.doi: 10.3109/03639049809108571.
87.    Seppala J, Korhonen H, Hakala R. New Biodegradable Polymers. Canada patent application CA2640170A1. 2007.
88.    Menceloglu Y, Inceoglu F, inventors; SabanciUniversitesi, assignee. Biodegradable thermoplastic nanocomposite polymers. United States patent application US 11/804,274. 2008.
89.    Yadong W, Ameer F, Langer R. Biodegradable polymer. United States patent application US7722894B2. 2002.
90.    Bruno C. Biodegradable polymer. European patent application EP2395047B1. 2011.
91.    Leong K, Jie W, Zhou RX, Mao HQ. Phosphate based Biodegradable Polymers. WO0168052A2. 2001.
92.    Mohanty AK, Misra M, Zarrinbakhsh N, Muthuraj R, Wang T, Rodriguez A, Vivekanandhan S. University of Guelph, assignee. Biodegradable polymer-based biocomposites with tailored properties and method of making those. European patent EP3265515A1. 2016.
93.    Kasuya KI,Method for controlling decomposition of biodegradable polymers. WO2013180124A1. 2013.
94.    Huang Y, Kim J. Methods of making functional biodegradable polymers. United States Patent, US7037983B2. 2006.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available