Author(s): Syed Afrid, Syed Sagheer Ahmed, Prajwal S, Rupesh Kumar M, Govind Yadav

Email(s): syedafrid220@gmail.com , sysaha6835@gmail.com , prajus8888@gmail.com , manirupeshkumar@yahoo.in , gyadav@iiim.res.in

DOI: 10.52711/0974-360X.2023.00501   

Address: Syed Afrid1, Syed Sagheer Ahmed2, Prajwal S3, Rupesh Kumar M4, Govind Yadav5*
1Department of Pharmacology, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, BG Nagara, Mandya, Karnataka 571448, India.
2Department of Pharmacology, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, BG Nagara, Mandya, Karnataka 571448, India.
3Department of Pharmacology, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, BG Nagara, Mandya, Karnataka 571448, India.
4Department of Pharmacology, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, BG Nagara, Mandya, Karnataka 571448, India.
5Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
Mutagenicity Laboratory, Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India, Laboratory Animal Facility, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
*Corresponding

Published In:   Volume - 16,      Issue - 6,     Year - 2023


ABSTRACT:
The Coronavirus disease-2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). It has engulfed the whole world, and it looks difficult to end this worldwide health crisis without actual medication. Natural products have been utilized since ancient times and have been beneficial over time. The outcome of various research work revealed that pure compounds isolated from medicinal plants, such as Tinospora cordifolia, Withania somnifera, Ocimum sanctum, Glycyrrhiza glabra, Piper longum, Curcuma longa, Allium sativum, Zingiber officinalis, Coriandrum sativum, Azadirachta indica, Emblica officinalis, etc. have excellent Coronavirus (CoV) inhibitory effect. Several molecules, including glabridin, liquiritin, flavonoids, triterpene, glycyrrhizin, aliphatic compounds, sesquiterpenoids, ß-sesquiphellandrene, zingerone, ß-phellandrene, citral, zingiberene, bisabolene, shogaols, cineol, farnesene, gingerols, withasomniferols A-C, withanone, withasomniferin-A, withasomidienone, withanolides A, linalool, flavonoids, camphor, eugenol, estragole, methyl chavicol, tannins, glycyrrhizic acid, alkaloids, saponins, fatty acids, glycosides, and essential oils, etc. isolated from plants might serve as potential candidates in the treatment of COVID-19.


Cite this article:
Syed Afrid, Syed Sagheer Ahmed, Prajwal S, Rupesh Kumar M, Govind Yadav. Review of Antiviral Medicinal Herbs with Special Emphasis on COVID-19. Research Journal of Pharmacy and Technology 2023; 16(6):3038-6. doi: 10.52711/0974-360X.2023.00501

Cite(Electronic):
Syed Afrid, Syed Sagheer Ahmed, Prajwal S, Rupesh Kumar M, Govind Yadav. Review of Antiviral Medicinal Herbs with Special Emphasis on COVID-19. Research Journal of Pharmacy and Technology 2023; 16(6):3038-6. doi: 10.52711/0974-360X.2023.00501   Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-6-79


REFERENCES:
1.    Wang C, Horby PW, Hayden FG, GAO GF. (2020) A novel coronavirus outbreak of global health concern. Lancet. 395(10223):470-473. doi.org/10.1016/S0140-6736(20)30185-9
2.    Xie, M., Chen, Q., (2020) Insight into 2019 novel coronavirus — an updated interim review and lessons from SARS-CoV and MERS-CoV. Int. J. Infect. Dis. 94, 119–124. doi.org/10.1016/j.ijid.2020.03.071
3.    Naming the Coronavirus Disease (COVID-19) and the Virus that Causes it. (2020) Retrieved on April 14. World Health Organization (WHO).
4.    Lu X, Zhang L, et al. (2020) SARS-CoV-2 infection in children. New England Journal of Medicine. 382(17):1663-5. 10.7150/ijbs.48991
5.    Palayew A. et al. (2020) Pandemic publishing poses a new COVID-19 challenge. Nat Hum Behav 4, 666-669. doi.org/10.1038/s41562-020-0911-0
6.    WHO. COVID-19 Weekly Epidemiological Update 35. World Heal Organ [Internet]. 2021;(December):1–3. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/weekly_epidemiological_update_22.pdf.
7.    Gautret P, Lagier J-C, Parola P, et al. (2020) Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 105949.doi.org/10.1016/j.ijantimicag.2020.105949
8.    Guidelines International Network (G-I-N). (2020) Available from: https://g-i-n.net/.
9.    Luo H, Tang QL, Shang YX, Liang SB, Yang M, Robinson N, Liu JP. (2020) Can Chinese medicine be used for the prevention of coronavirus disease 2019 (COVID-19)? A review of historical classics, research evidence, and current prevention programs. Chinese journal of integrative medicine. 26(4):243-50. doi.org/10.1007/s11655-020-3192-6
10.    Ganjhu RK, Mudgal PP, Maity H, Dowarha D, Devadiga S, Nag S, Arunkumar G. (2015) Herbal plants and plant preparations as a remedial approach for viral diseases. Virus disease. 26(4):225–236. doi.org/10.1007/s13337-015-0276-6
11.    Lin LT, Hsu WC, Lin CC. (2014) Antiviral natural products and herbal medicines. J Tradit Complement Med. 4(1):24–35. doi.org/10.4103/2225-4110.124335
12.    Lee JY, Abundo MEC, Lee CW. (2018) Herbal Medicines with Antiviral Activity against the Influenza Virus, a Systematic Review. The American Journal of Chinese Medicine. 46(8):1663-1700. doi.org/10.1142/S0192415X18500854
13.    Yang Y, Islam MS, Wang J, Li Y, Chen X. (2021) Traditional Chinese medicine in the treatment of patients infected with 2019-New Coronavirus (SARS-CoV-2): a review and perspective. Int J Biol Sci. 16(10):1708-1717. 10.7150/ijbs.45538
14.    Rothan, H. A., & Byrareddy, S. N. (2020). The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of autoimmunity, 102433. doi.org/10.1016/j.jaut.2020.102433
15.    Chan, K.W., V.T. Wong and S.C. Tang. (2020) COVID-19: An update on the epidemiological, clinical, preventive, and therapeutic evidence and guidelines of integrative Chinese-Western medicine for the management of 2019 novel coronavirus disease. Am. J. Chin. Med. 48: 1–26. doi.org/10.1142/S0192415X20500378
16.    Menni C, Valdes A, Freydin MB, et al. (2020) Loss of smell and taste in combination with other symptoms is a strong predictor of COVID-19 infection. MedRxiv. doi.org/10.1101/2020.04.05.20048421
17.    World Health Organization (WHO). Q&A on coronaviruses (COVID-19); 2020.
18.    Chen N. (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395, 507-513. doi.org/10.1016/S0140-6736(20)30211-7
19.    Huang C. et al. (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497-506. doi.org/10.1016/S0140-6736(20)30183-5
20.    Marshall M. (2020) How COVID-19 can damage the brain. Nature 585, 342-343.
21.    Paterson R.W. et al. (2020) Neurosurgery, C.-S.G., The emerging spectrum of COVID-19 neurology: clinical, radiological, and laboratory findings. Brain. doi.org/10.1093/brain/awaa240
22.    Varatharaj A. et al. (2020) Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry. doi.org/10.1016/S2215-0366(20)30287-X
23.    Forster P, Forster L, Renfrew C, Forster M. (2020) Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci USA. 117(17):9241-9243. doi.org/10.1073/pnas.2004999117
24.    Bedford J, Enria D, Giesecke J, et al. (2020) For the WHO strategic and technical advisory group for infectious hazards. COVID-19: towards controlling a pandemic. Lancet. 395(10229):1015-1018. doi.org/10.1016/S0140-6736(20)30673-5
25.    Lu R, Zhao X, Li J, et al. (2020) Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 395(10224):565-574. doi.org/10.1016/S0140-6736(20)30251-8
26.    Zhang T, Wu Q, Zhang Z. (2020) Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol. 30(7):1346e1351. e1342. doi.org/10.1016/j.cub.2020.03.022
27.    Hoffmann M, Kleine-Weber H, Schroeder S, et al. (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181(2):271e280. e278. doi.org/10.1016/j.cell.2020.02.052
28.    Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. (2020) Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. J Am Med Assoc. 323(18):1824e1836. 10.1001/jama.2020.6019
29.    Bosch B.J, Van der Zee R, de Haan C, Rottier P. (2003) The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol. 77, 8801–8811. doi.org/10.1128/JVI.77.16.8801-8811.2003
30.    Hilgenfeld R. (2014) From SARS to MERS: crystallographic studies on corona viral proteases enable antiviral drug design. FEBS J. 281, 4085–4096. doi.org/10.1111/febs.12936
31.    Zhou P, et al. (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273. doi.org/10.1038/s41586-020-2012-7
32.    Du L, He Y, Zhou Y, Liu S, Zheng B, Jiang S. (2009) The spike protein of SARS-CoV - a target for vaccine and therapeutic development. Nat. Rev. Microbiol. 7, 226–236. doi.org/10.1038/nrmicro2090
33.    Arbely E. (2004) A highly unusual palindromic transmembrane helical hairpin formed by SARS coronavirus E protein. J. Mol. Biol. 341, 769–779. doi.org/10.1016/j.jmb.2004.06.044
34.    Venkatagopalan P, Daskalova S.M, Lopez L.A, Dolezal K.A, Hogue B.G. (2015) Coronavirus envelope (E) protein remains at the site of assembly. Virology 478, 75–85. doi.org/10.1016/j.virol.2015.02.005
35.    Ruch T.R, Machamer C.E. (2012) The Coronavirus E Protein: assembly and Beyond. Viruses 4, 363–382. doi.org/10.3390/v4030363
36.    Schoeman D, Fielding B.C. (2019) Coronavirus envelope protein: current knowledge. Virol. J. 16, 69. doi.org/10.1186/s12985-019-1182-0
37.    Fehr A, Perlman S. (2015) Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 1282, 1–23 Clifton, N.J. doi.org/10.1007/978-1-4939-2438-7_1
38.    McBride R, Van Zyl M, Fielding B.C. (2014) The coronavirus nucleocapsid is a multifunctional protein. Viruses 6, 2991–3018. doi.org/10.3390/v6082991
39.    Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 2003; 14; 361(9374):2045-6. doi.org/10.1016/S0140-6736(03)13615-X
40.    Chen F, et al (2004) In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol. 2004; 31:69-75. doi.org/10.1016/j.jcv.2004.03.003
41.    Sharma P, Dwivedeea BP, Bisht D, Dash AK, Kumara D. (2019) The chemical constituents and diverse pharmacological importance of Tinospora cordifolia. 5(9) e02437. doi.org/10.1016/j.heliyon.2019.e02437
42.    Saha S, Ghosh S. (2012)Tinospora cordifolia: One plant, many roles. Anc Sci Life. 31(4):151–159. 10.4103/0257-7941.107344
43.    Akhtar S. (2010) Use of Tinospora cordifolia in HIV infection. Indian J Pharmacol. 42(1):57. DOI: 10.4103/0253-7613.62402
44.    Jolad SD, Lantz RC, Solyom AM, Chen GJ, Bates RB, Timmermann BN. (2004) Fresh organically grown ginger (Zingiber officinale): Composition and effects on LPS-induced PGE2 production. Phytochemistry. 65:1937–54. doi.org/10.1016/j.phytochem.2004.06.008
45.    Ali BH, Blunden G, Tanira MO, Nemmar A. (2008) Some phytochemical, pharmacological, and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem Toxicol. 46:409–420. doi.org/10.1016/j.fct.2007.09.085
46.    Ernst E, Pittler MH. (2000) Efficacy of ginger for nausea and vomiting: a systematic review of randomized clinical trials. Br J Anaesth. 84:367–371. doi.org/10.1093/oxfordjournals.bja.a013442
47.    Barta I. et al. (2006) Current trends and perspectives in nutrition and cancer prevention. Neoplasma. 53:19– 25. PMID: 16416008
48.    Ghayur M. N, Gilani A. H, Janssen L. J. (2008) Ginger attenuates acetylcholine-induced contraction and Ca2+ signaling in murine airway smooth muscle cells. Can J Physiol Pharmacol. 86(5): 264–271. https://doi.org/10.1139/Y08-030
49.    Elsakka M, Grigorescu E, Stanescu U, Stanescu U, Dorneanu V. (1990) New data referring to the chemistry of Withania somnifera species. Rev Med Chir Soc Med Nat Iasi. 94:385–387. PMID: 2100857
50.    Ziauddin M, Phansalkar N, Patki P, Diwanay S, Patwardhan B. (1996) Studies on the immunomodulatory effects of ashwagandha. J. Ethnopharmacol. 50(2): 69-76. doi.org/10.1016/0378-8741(95)01318-0
51.    Dhuley JN.(1997) Effect of some Indian herbs on macrophage functions in ochratoxin treated mice. J. Ethnopharmacol.58(1):15-20. doi.org/10.1016/S0378-8741(97)00072-X
52.    Rasool M, Varalakshmi P. (2006) Immunomodulatory role of Withania somnifera root powder on experimental induced inflammation: An in vivo and in vitro study. Vascul. Pharmacol. 2 44(6): 406-410. doi.org/10.1016/j.vph.2006.01.015
53.    Gautam M, Diwanay SS, Gairola S, Shinde YS, Jadhav SS, Patwardhan B. (2004) Immune response modulation to DPT vaccine by aqueous extract of Withania somnifera in the experimental system. Int. Immunopharmacol. 4(6): 841-849. doi.org/10.1016/j.intimp.2004.03.005
54.    Davis L, Kuttan G. (2000) Immunomodulatory activity of Withania somnifera. J. Ethnopharmacol. 71(1-2): 193-200. doi.org/10.1016/S0378-8741(99)00206-8
55.    Cai Z, Zhang G, Tang B, Liu Y, Fu X, Zhang X. (2015) Promising anti-influenza properties of an active constituent of Withania somnifera Ayurvedic herb in targeting neuraminidase of H1N1 influenza: a computational study. Cell biochemistry and biophysics. 72(3):727-39. doi.org/10.1007/s12013-015-0524-9
56.    Kambizi LG, Goosen BM, Taylor MB, Afolayan AJ. (2007) Anti-viral effects of aqueous extracts of Aloe ferox and Withania somnifera on herpes simplex virus type 1 in cell culture. South African Journal of Science. 103(9- 10):359-60.
57.    Singh V, Amdekar S, Verma O. Ocimum sanctum (Tulsi): Bio-pharmacological activities. A review. Pharmacology. 2010;1(10). 10.9754/journal.wmc.2010.001046
58.    Joshi RK. (2014) Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet Basil) from Western Ghats of North West Karnataka, India. Anc Sci Life.; 33(3):151–156. 10.4103/0257-7941.144618
59.    Venu Prasad MP. (2014) Antifatigue and Neuroprotective Properties of Selected Species of Ocimum L. A thesis for Doctor of Philosophy in Biochemistry submitted to Department of Biochemistry, University of Mysore.
60.    Chiang LC, Ng LT, Cheng PW, Chiang W, and Lin CC. (2005) Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin. Exp. Pharmacol. Physiol; 32(10):811-816. doi.org/10.1111/j.1440-1681.2005.04270.x
61.    Jamshidi N, Cohen MM. (2017) The Clinical Efficacy and Safety of Tulsi in Humans: A Systematic Review of the Literature. Evid Based Complement Alternat Med:9217567. doi.org/10.1155/2017/9217567
62.    Mondal S. et al. (2011) Double-blinded randomized controlled trial for immunomodulatory effects of Tulsi (Ocimum sanctum Linn.) leaf extract on healthy volunteers. Journal of Ethnopharmacology; 136(3):452–456. doi.org/10.1016/j.jep.2011.05.012
63.    Hasan MR, Islam MN, Islam MR. (2016) Phytochemistry, pharmacological activities and traditional uses of Emblica officinalis: A review. International Current Pharmaceutical Journal. 5(2):14-21. doi.org/10.3329/icpj.v5i2.26441
64.    Luo W, Zhao M, Yang B, Ren J, Shen G, Rao G. (2016) Antioxidant and antiproliferative capacities of phenolics purified from Phyllanthus Emblica L. fruit. Food Chemistry. 126(1):277-82. doi.org/10.1016/j.foodchem.2010.11.018
65.    Yadav SS, Singh MK, Singh PK, Kumar V. (2017) Traditional knowledge to clinical trials: a review on therapeutic actions of Emblica officinalis. Biomedicine & Pharmacotherapy. 93:1292-302. doi.org/10.1016/j.biopha.2017.07.065
66.    Grover H. S, Deswal H, Singh Y, & Bhardwaj A. (2015) Therapeutic effects of amla in medicine and dentistry: A review. Journal of Oral Research and Review, 7(2), 65. 10.4103/2249-4987.172498
67.    Xiang YF, Ju HQ, Li S, Zhang YJ, Yang CR, Wang YF. (2010) Effects of 1, 2, 4, 6-tetra-O-galloyl-β-D-glucose from P. emblica on HBsAg and HBeAg secretion in HepG2. 2.15 cell culture. Virologica Sinica. 25(5):375-80. doi.org/10.1007/s12250-010-3144-y
68.    Xiang Y. et al. (2011) In vitro Anti-Herpes Simplex Virus Activity of 1, 2, 4, 6-Tetra‐O‐galloyl‐β‐d‐glucose from Phyllanthus emblica L.(Euphorbiaceae). Phytotherapy Research. 25(7):975-82. doi.org/10.1002/ptr.3368
69.    Joshi S and Gyawali A. (2012) Phytochemical and biological studies on Zanthoxylum armatum of Nepal. J. Nepal Chem. Soc. 30, 71–77. doi.org/10.3126/jncs.v30i0.9339
70.    Phuyal N, Jha PK, Prasad Raturi P, Rajbhandary S. (2019) Essential oil composition of Zanthoxylum armatum leaves as a function of growing conditions, J Ethnopharmacol. 30; 229:326-341. doi.org/10.1080/10942912.2019.1687517
71.    Rajbhandari M. et al. (2009) Antiviral activity of some plants used in Nepalese traditional medicine. Evid. -Based Complement. Altern. Med. 6 (4), 517–522. doi.org/10.1093/ecam/nem156
72.    Kumar A, Naaz F, Kushwaha A, Chaudhary P, Srivastav P. (2016) Present review on phytochemistry, neutraceutical, antimicrobial, antidiabetic, biotechnological, and pharmacological characteristics of Moringa oleifera Linn BMR Phytomed.2(1):1-7.
73.    Mahmood KT, Mugal T, Haq IU. (2010)Moringa oleifera: a natural gift-A review. Journal of Pharmaceutical Sciences and Research. 1; 2(11):775.
74.    Brilhante RS. Et al. (2017) Research advances on the multiple uses of Moringa oleifera: A sustainable alternative for the socially neglected population. Asian Pacific journal of tropical medicine. 10(7):621-630. doi.org/10.1016/j.apjtm.2017.07.002
75.    Nworu CS, Okoye EL, Ezeifeka GO, Esimone CO. (2013) Extracts of Moringa oleifera Lam. showing inhibitory activity against early steps in the infectivity of HIV-1 lentiviral particles in a viral vector-based screening. African Journal of Biotechnology. 12(30): 4866-4873. 10.5897/AJB2013.12343
76.    Raza A. et al. (2017) Antiviral and immune-boosting activities of different medicinal plants against Newcastle disease virus in poultry. World's Poultry Science Journal. 71(3):523-32. doi.org/10.1017/S0043933915002147
77.    Younus I, Siddiq A, Ishaq H, Anwer L, Badar S, Ashraf M. (2016) Evaluation of the antiviral activity of plant extracts against foot and mouth disease virus in vitro. Pak. J. Pharm. Sci. 29(4):1263-8.
78.    Waiyaput W, Payungporn S, Issara-Amphorn J, Nattanan T, Panjaworayan T. (2012) Inhibitory effects of crude extracts from some edible Thai plants against replication of hepatitis B virus and human liver cancer cells. BMC complementary and alternative medicine. 12(1):246. doi.org/10.1186/1472-6882-12-246
79.    Okoye EL, Ezeifeka GO, Esimone CO, Nworu CS. (2010) Evaluation of the antiviral activity of Moringa oleifera on three RNA viruses. National Summit on Moringa Development, Organized by the Raw Material Research Development Council.
80.    Neelam and Krishnaswamy K (2001) Nutritive value of Pepper, In Pepper market review, National Institute of Nutrition, Hyderabad, May, pp. 1-5.
81.    Catanzaro M, Corsini E, Rosini M, Racchi M, & Lanni C. (2018) Immunomodulators inspired by nature: a review on curcumin and echinacea. Molecules, 23(11), 2778. doi.org/10.3390/molecules23112778
82.    Teymouri M, Pirro M, Johnston TP, Sahebkar A. (2017) Curcumin as a multifaceted compound against human papillomavirus infection and cervical cancers: a review of chemistry, cellular, molecular, and preclinical features. Biofactors. 43: 331–346. doi.org/10.1002/biof.1344
83.    Rechtman MM. (2010) Curcumin inhibits the hepatitis B virus via down-regulation of the metabolic coactivator PGC-1α. FEBS Lett. 584(11); 2485–2490. doi.org/10.1016/j.febslet.2010.04.067
84.    Dai J. et al. (2018) Inhibition of curcumin on influenza A virus infection and influenzal pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK, and NF-κB pathways. Int. Immunopharmacol. 54:177–187. doi.org/10.1016/j.intimp.2017.11.009
85.    Mounce BC, Cesaro T, Carrau L, Vallet T, Vignuzzi M. (2017) Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res.142 148–157. doi.org/10.1016/j.antiviral.2017.03.014
86.    Bourne KZ, Bourne N., Reising SF, Stanberry LR. (1999) Plant products as topical microbicide candidates: assessment of in vitro and in vivo activity against herpes simplex virus type 2. Antiviral Res. 42:219–226. doi.org/10.1016/S0166-3542(99)00020-0
87.    Wen CC, Kuo YH, Jan JT, et al. (2007) Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem. 50:4087–4095. doi.org/10.1021/jm070295s
88.    Lawson LD, Bauer R. (1998) Garlic: a review of its medicinal effects and indicated active compounds. In: Phytomedicines of Europe. Chemistry and Biological Activity. Series 69 1. Washington DC: American Chemical Society; 176–209. 10.1021/bk-1998-0691.ch014
89.    Arreola R. et al. (2015) Immunomodulation and anti-inflammatory effects of garlic compounds. Journal of immunology research, 2015. doi.org/10.1155/2015/401630
90.    P. M. Chandrashekar and Y. P. Venkatesh. (2009) 'Identification of the protein components displaying immunomodulatory activity in aged garlic extract,' Journal of Ethnopharmacology, vol. 124, no. 3, pp. 384–390. doi.org/10.1016/j.jep.2009.05.030
91.    Weber ND. Et al. (1992) In vitro virucidal effects of Allium sativum (garlic) extract and compounds. Planta Med. 58:417– 423. 10.1055/s-2006-961504
92.    Tsai Y, Cole LL, Davis LE, Lockwood SJ, Simmons V, Wild GC. (1985) Antiviral Properties of Garlic: In vitro Effects on Influenza B, Herpes Simplex and Coxsackie Viruses. Planta Med. 51(5):460–461. 10.1055/s-2007-969553
93.    Paramasivam S, Thangaradjou T, Kannan L. (2007) Effect of natural preservatives on the growth of histamineproducing bacteria. J Environ Biol. 28:271–274.
94.    Senanayake UM, Lee TH, Wills RBH. (1998) Volatile constituents of cinnamon (Cinnamomum zeylanicum) oils. Journal of Agricultural and Food Chemistry. 26(4):822–824. doi.org/10.1021/jf60218a031
95.    Tung YT, Chua MT, Wang SY, Chang ST. (2008) Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresource Technology. 99(9):3908–3913. doi.org/10.1016/j.biortech.2007.07.050
96.    Fatima M, Zaidi NU, Amraiz D, Afzal F. (2016) In Vitro Antiviral Activity of Cinnamomum cassia and Its Nanoparticles against H7N3 Influenza a Virus, J Microbiol Biotechnol. 26(1):151-9. doi.org/10.4014/jmb.1508.08024
97.    Brochot A, Guilbot A, Haddioui L, Roques C. (2017) Antibacterial, antifungal, and antiviral effects of three essential oil blends. Microbiologyopen;6(4): e00459. doi:10.1002/mbo3.459. doi.org/10.1002/mbo3.459
98.    Gonçalves JLS. Et al. (2005) In vitro anti-rotavirus activity of some medicinal plants used in Brazil against diarrhoea. J Ethnopharmacol, 99:403– 407. doi.org/10.1016/j.jep.2005.01.032
99.    Verma H, Patil PR, Kolhapure RM, Gopalkrishna V. (2008) Antiviral activity of the Indian medicinal plant extract, Swertia chirata against herpes simplex viruses: a study by in-vitro and molecular approach. Indian J. Med. Microbiol. 26, 322–326. doi.org/10.1016/S0255-0857(21)01807-7
100.    Guha S, Ghosal S, Chattopadhyay U. (1996) Antitumor, the immunomodulatory and anti-HIV effect of mangiferin, a naturally occurring glucosylxanthone. Chemotherapy. 42, 443–451. doi.org/10.1159/000239478
101.    Zhou NJ, Geng CA, Huang XY, Ma YB, Zhang XM, Wang JL, Chen JJ. (2015) Anti-hepatitis B virus active constituents from Swertia chirayita. Fitoterapia; 100, 27–34. https://doi.org/10.1016/j.fitote.2014.11.011
102.    Patel MJ, Tripathy S, Mukhopadhyay KD, et al. (2018) A supercritical CO2 extract of neem leaf (A. indica) and it's bioactive liminoid, nimbolide, suppresses colon cancer in preclinical models by modulating pro-inflammatory pathways. Mol Carcinog;57(9):1156-1165. 6. doi.org/10.1002/mc.22832
103.    Badam L, Joshi SP, Bedekar SS. (1999) In vitro antiviral activity of neem (Azadirachta indica. A. Juss) leaf extract against group B coxsackieviruses. J Cimmun Dis. 31:79–90. PMID:10810594
104.    Parida MM, Upadhyay C, Pandya G, Jana AM. (2002) Inhibitory potential of neem (Azadirachta indica Juss) leaves on dengue virus type-2 replication. J Ethnopharmacol. 79 (2):273-278. doi.org/10.1016/S0378-8741(01)00395-6
105.    R. Subapriya, S. Nagini. (2005) Medicinal properties of neem leaves: a review, Current Medicinal Chemistry-Anti-Cancer Agents 5 (2) 149–156. doi.org/10.2174/1568011053174828
106.    Afrid S, Ahmed SS, Kumar MR, Zuber M. Botanical description, phytochemistry, traditional uses and pharmacology of Cardiospermum halicacabum: an updated review. Journal of Global Ecology and Environment. 2021 Oct 25:1-9.
107.    Afrid S, Ahmed SS, Kumar MR, Gowda SK. Overview of various medicinal plants having potent analgesic activity. Asian Journal of Plant and Soil Sciences. 2021 Oct 14:148-58.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available