Author(s):
Bhupendra G. Prajapati, Himanshu Paliwal, Mayuree Patel
Email(s):
bhupen27@gmail.com
DOI:
10.52711/0974-360X.2023.00436
Address:
Bhupendra G. Prajapati*, Himanshu Paliwal, Mayuree Patel
Department of Pharmaceutics and Pharmaceutical Technology,Shree S. K. Patel College of Pharmacy Education and Research, Ganpat University, Mehsana, Gujarat, India.
*Corresponding Author
Published In:
Volume - 16,
Issue - 6,
Year - 2023
ABSTRACT:
The present study was an attempt to prepare nanoparticle of Acitretin which is used in Psoriasis. The preparation of nanoparticles was done by precipitation method employing several blends of polymers such as PVPK 30, PVPK 90, Poloxamer 407 and Poloxamer 188. The oral nanoparticles were characterized for various physicochemical parameters, such as particle size analysis, drug-excipient interactions, zeta potential, saturated solubility, XRD study, in-vitro drug release, FTIR spectroscopic studies displayed that there were not any interactions between drug and excipients. The nanoparticle batch F8 was found to be optimum batch based upon the outcomes obtained from the physicochemical characterization of nanoparticles. The mean particle size of nanoparticle batch F8 containing showed 96.01 % release at the end of 90 min and formulation displayed good nanoparticle strength.
Cite this article:
Bhupendra G. Prajapati, Himanshu Paliwal, Mayuree Patel. Fabrication and Evaluation of Polymeric Nanoparticles of Acitretin for the Solubility Enhancement Fabrication and Evaluation of Polymeric Nanoparticles of Acitretin for the Solubility Enhancement. Research Journal of Pharmacy and Technology 2023; 16(6):2655-0. doi: 10.52711/0974-360X.2023.00436
Cite(Electronic):
Bhupendra G. Prajapati, Himanshu Paliwal, Mayuree Patel. Fabrication and Evaluation of Polymeric Nanoparticles of Acitretin for the Solubility Enhancement Fabrication and Evaluation of Polymeric Nanoparticles of Acitretin for the Solubility Enhancement. Research Journal of Pharmacy and Technology 2023; 16(6):2655-0. doi: 10.52711/0974-360X.2023.00436 Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-6-14
REFERENCES:
1. Sun B, Yeo Y. Nanocrystals for the parenteral delivery of poorly water-soluble drugs. Current Opinion in Solid State & Materials Science. 2012;16(6):295-301. doi:10.1016/j.cossms.2012.10.004
2. Raghuvanshi S, Pathak K. Recent advances in delivery systems and therapeutics of cinnarizine: a poorly water-soluble drug with absorption window in stomach. Journal of Drug Delivery. 2014; 2014:479246. doi:10.1155/2014/479246
3. Choudhary H, Yadav B, Patel P, Das P, Pillai S. Formulation and Evaluation of Ramipril Fast Dissolving Tablet using Solid Dispersion. Research Journal of Pharmacy and Technology.2019; 12(8): 3764-72. doi: 10.5958/0974-360X.2019.00645.0
4. Bagul SK, Singh MC. Application of Nanonization, Dimerization and Co-Solvency for Sterile Solution Formulations of Paracetamol. Research Journal of Pharmacy and Technology.2020; 13(2):727-731. doi: 10.5958/0974-360X.2020.00138.9
5. Bodkhe AA, Bedi RS, Upadhayay A, Kale MK. Ophthalmic Microemulsion: Formulation Design and Process Optimization. Research Journal of Pharmacy and Technology. 2018; 11(12): 5474-5482. doi: 10.5958/0974-360X.2018.00998.8
6. Shaikh FI, Patel MB, Surti NI, Patel VB. Preparation and Characterization of Lercanidipine Hydrochloride Inclusion complex with β-cyclodextrin and effect of Complexation on Solubility and Dissolution. Research Journal of Pharmacy and Technology. 2017; 10(4): 1041-1048. doi: 10.5958/0974-360X.2017.00189.5
7. Krishnakumar S, Divya R, Devi NRK, Keerthana G, Judi AA. Thermo-chemical induced production of silver nanoparticles (Ag-NPs) and their antimicrobial activity towards human pathogens. Research Journal of Pharmacy and Technology. 2017; 10(5): 1322-1326. doi: 10.5958/0974-360X.2017.00234.7
8. Yasir M, Chauhan I, Haji MJ, Tura AJ, Saxena PK. Formulation and Evaluation of Glyceryl Behenate based Solid Lipid Nanoparticles for the Delivery of Donepezil to Brain through Nasal Route. Research Journal of Pharmacy and Technology. 2018; 11(7): 2836-2844. doi: 10.5958/0974-360X.2018.00523.1
9. Lee BK, Yun YH, Park K. Smart nanoparticles for drug delivery: Boundaries and Opportunities. Chemical Engineering Science. 2015; 125:158–164. doi: 10.1016/j.ces.2014.06.042
10. Zahin N, Anwar R, Tewari D, Kabir MT. Sajid A, Mathew B, Uddin MS, Aleya L, Abdel-Daim MM. Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environmental Science and Pollution Research. 2020;27(16):19151-19168. doi:10.1007/s11356-019-05211-0
11. Prajapati BG, Jivani M, Paliwal H. Formulation and Optimization of Topical Nanoemulsion Based Gel of MometasoneFuroate Using 32 Full Factorial Design. Indian Drugs. 2021;58(06):19-29. doi:10.53879/id.58.06.12796
12. Prajapati BG, Patel AG, Paliwal H. Fabrication of nanoemulsion-based in situ gel using moxifloxacin hydrochloride as model drug for the treatment of conjunctivitis. Food Hydrocolloids for Health. 2021;1:100045. doi:10.1016/j.fhfh.2021.100045
13. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS. Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology. 2018;16(1):71. doi:10.1186/s12951-018-0392-8
14. Jaitak D, Nacchammai K, Pavithra K, Nair GSK, Kumar SS. Polymeric Nanoparticles for Anti-Cancer Treatment- A Review of its Mechanisms. Research Journal of Pharmacy and Technology. 2021; 14(3):1747-1754. doi: 10.5958/0974-360X.2021.00311.5
15. Prajapati B. Nanoparticles as platforms for targeted drug delivery systems in cancer therapy. Nanotechnology. 2008;3(1).
16. Lombardo D, Kiselev MA, Caccamo MT. Smart Nanoparticles for Drug Delivery Application: Development of Versatile Nanocarrier Platforms in Biotechnology and Nanomedicine. Journal of Nanomaterials. 2019; 2019:26. doi.org/10.1155/2019/3702518
17. Rao SV, Kumar SS. Flutamide Loaded Polymeric Nanoparticles for prostate Cancer: A Review. Research Journal of Pharmacy and Technology. 2021; 14(8):4501-3. doi: 10.52711/0974-360X.2021.00782
18. Mohamed AI, Abd-Motagaly AM, Ahmed OA, Amin S, Mohamed Ali AI. Investigation of Drug-Polymer Compatibility Using Chemometric-Assisted UV-Spectrophotometry. Pharmaceutics. 2017;9(1):7. doi:10.3390/pharmaceutics9010007
19. Kazemabadi FZ, Heydarinasab A, Akbarzadeh A, Ardjmand M. Preparation, characterization and in vitro evaluation of PEGylated nanoliposomal containing etoposide on lung cancer. Artificial Cells, Nanomedicine and Biotechnology. 2019; 47(1):3222-3230.doi: 10.1080/21691401.2019.1646265
20. Peltonen L, Hirvonen J. Drug nanocrystals - Versatile option for formulation of poorly soluble materials. International Journal of Pharmarceutics. 2018;537(1-2):73-83. doi:10.1016/j.ijpharm.2017.12.005
21. Gao L, Zhang D, Chen M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. Journal of Nanoparticle Research. 2008;10:845–862. doi: 10.1007/s11051-008-9357-4
22. Ayyappan. T, Shanmugam. S, Vetrichelvan. T. Response Design Optimized Polymeric Nanoparticles of Etoposide for Improved Oral bioavailability in Albino Rats. Research Journal of Pharmacy and Technology. 2018; 11(6): 2538-2540. doi: 10.5958/0974-360X.2018.00468.7
23. Chu KR, Lee E, Jeong SH, Park ES. Effect of particle size on the dissolution behaviors of poorly water-soluble drugs. Archives of Pharmacal Research. 2012;35(7):1187-1195. doi:10.1007/s12272-012-0709-3
24. Kumar SS, Joe VF. Pharmacokinetics of Tacrine Loaded MPEG-PCL Polymeric Nanoparticles. Research Journal of Pharmacy and Technology. 2017; 10(1): 135-140. doi: 10.5958/0974-360X.2017.00030.0
25. Ravichandran R. Nanoparticles in Drug Delivery: Potential Green Nanobiomedicine Applications, International Journal of Green Nanotechnology: Biomedicine. 2009; 1(2): B108-B130. doi:10.1080/19430850903430427
26. Mazumder S, Dewangan AK, Pavurala N. Enhanced dissolution of poorly soluble antiviral drugs from nanoparticles of cellulose acetate based solid dispersion matrices. Asian Journal of Pharmaceutical Sciences. 2017;12(6):532-541. doi:10.1016/j.ajps.2017.07.002
27. Maharini I, Martien R, Nugroho AK, Supanji, Adhyatmika. Validation UV Spectrophotometric Method to Determine Entrapment Efficiency of Ocular Polymeric Nanoparticle Levofloxacin Hemihydrate. Research Journal of Pharmacy and Technology 2021; 14(10):5479-2. doi: 10.52711/0974-360X.2021.00956
28. Dorofeev GA, Streletskii AN, Povstugar IV, Protasov AV, Elsukov EP. Determination of nanoparticle sizes by X-ray diffraction. Colloid Journal. 2012; 74, 675–685. doi: 10.1134/S1061933X12060051
29. Jacobs C, Müller RH. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharmaceutical Research. 2002; 19(2): 189-194. doi:10.1023/a:1014276917363
30. Sharma D, Maheshwari D, Philip G, Rana R, Bhatia S, Singh M, Gabrani R, Sharma SK, Ali J, Sharma RK, Dang S. Formulation and optimization of polymeric nanoparticles for intranasal delivery of lorazepam using Box-Behnken design: in vitro and in vivo evaluation. Bio Med Research International. 2014;2014:156010. doi:10.1155/2014/156010
31. Matteucci ME, Hotze MA, Johnston KP, Williams RO 3rd. Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization. Langmuir. 2006;22(21):8951-8959. doi:10.1021/la061122t
32. Peltonen L, Hirvonen J. Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. The Journal of Pharmacy and Pharmacology. 2010;62(11):1569-1579. doi:10.1111/j.2042-7158.2010.01022.x