Author(s): Bobi Prabowo, Tri Yudani Mardining Raras, Maria Lucia Inge Lusida, Wisnu Barlianto, Hidayat Sujuti, Edi Mustamsir, Respati Suryanto Drajat, Sumarno Reto Prawiro


DOI: 10.52711/0974-360X.2023.00435   

Address: Bobi Prabowo1,2, Tri Yudani Mardining Raras3, Maria Lucia Inge Lusida4,5, Wisnu Barlianto6, Hidayat Sujuti3, Edi Mustamsir7, Respati Suryanto Drajat7, Sumarno Reto Prawiro8
1Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia. 2Department of Emergency Medicine, Kepanjen General Hospital, Malang, Indonesia. 3Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Brawijaya Malang, Indonesia. 4Department of Medical Microbiology, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia. 5Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia. 6Department of Pediatric, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia. 7Department of Orthopedics and Traumatology, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia.
8Department of Clinical Microbiology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia.
*Corresponding Author

Published In:   Volume - 16,      Issue - 6,     Year - 2023

SARS-CoV-2 (COVID-19) remains a very high risk to this date. The COVID-19 mortality rate is relatively high since it potentially causes various complications and cytokine storms, thereby increasing the mortality rate of those infected. Consumption of healthy food/drink is one of the means to boost the immune system and prevent COVID-19 infection. One of the interesting plants to use in this case is Saussurea costus. This plant contains active ingredients that can serve as anti-inflammatory, antitumor, antibacterial, antiseptic, antifungal agents, etc. However, studies on the role of the active ingredients as an anti-inflammatory agent to treat COVID-19, prevent cytokine storms, and improve COVID-19 patient outcomes are rarely found. In this in silico study, a total of 75 compounds in Saussurea costus were analized and five of which showed the greatest potential as the drug candidates, namely isoalantolactone, isozaluzanin C, arbusculin a, ß-costic acid, and picriside B. Three target proteins were utilized in this study, including IL-6R, NFKB1, and TNFR1. The ligand samples were minimized before the molecular simulation process, and then the target proteins were sterilized. Furthermore, biological activity tests were conducted on the (anti-inflammatory and immunosuppressant) drug candidate compounds, followed by a druglikeness analysis, and ended with blind dockings to screen the potential compounds of the natural ingredients. The analysis of the docking results was performed using LigPlot+. The analysis results signified that according to the predicted probability with medium confidence (Pa > 0.3), all of the drug candidate compounds of Saussurea costus in silico indicated biological activities as anti-inflammatory and immunosuppressant agents, which could be categorized as drug-like molecules. In addition, the molecular docking analysis results in this study suggested that the five active compounds of Saussurea costus showed an affinity for the aforementioned target proteins. Among the five active compounds, picriside B had the lowest binding affinity for IL-6R, NFKB1, and TNFR1, with total energies of -6.3kcal/mol, - 6.5kcal/mol, and -9.0 kcal/mol, respectively. In addition, picriside B also demonstrated the most interactions with all of the target proteins. This compound was able to form hydrophobic and hydrogen bonds with the three target proteins. The other four active compounds could be potentially utilized as adjuvant therapy for COVID-19 because these compounds had an affinity for and many chemical bond interactions with the three target proteins.

Cite this article:
Bobi Prabowo, Tri Yudani Mardining Raras, Maria Lucia Inge Lusida, Wisnu Barlianto, Hidayat Sujuti, Edi Mustamsir, Respati Suryanto Drajat, Sumarno Reto Prawiro. Roles of Anti-Inflammatory Active Ingredients of Saussurea costus in Silico approach as Adjuvant Therapy in COVID-19 Cases. Research Journal of Pharmacy and Technology 2023; 16(6):2649-4. doi: 10.52711/0974-360X.2023.00435

Bobi Prabowo, Tri Yudani Mardining Raras, Maria Lucia Inge Lusida, Wisnu Barlianto, Hidayat Sujuti, Edi Mustamsir, Respati Suryanto Drajat, Sumarno Reto Prawiro. Roles of Anti-Inflammatory Active Ingredients of Saussurea costus in Silico approach as Adjuvant Therapy in COVID-19 Cases. Research Journal of Pharmacy and Technology 2023; 16(6):2649-4. doi: 10.52711/0974-360X.2023.00435   Available on:

1.    Fahmi M, Kharisma VD, Ansori ANM, Ito M. Retrieval and investigation of data on SARS-CoV-2 and COVID-19 using bioinformatics approach. Adv Exp Med Biol. 2021; 1318: 839-857. DOI: 10.1007/978-3-030-63761-3_47.
2.    Turista DDR, Islamy A, Kharisma VD, Ansori ANM. Distribution of COVID-19 and phylogenetic tree construction of SARS-CoV-2 in Indonesia. J Pure Appl Microbiol. 2020; 14: 1035-1042.
3.    Ansori ANM, Kharisma VD, Muttaqin SS, Antonius Y, Parikesit AA. Genetic variant of SARS-CoV-2 isolates in Indonesia: Spike glycoprotein gene. J Pure Appl Microbiol. 2020; 14: 971-978.
4.    Ansori ANM, Fadholly A, Hayaza S, Susilo RJK, Inayatillah B, Winarni D, Husen SA. A Review on Medicinal Properties of Mangosteen (Garcinia mangostana L.). Res J Pharm Techol. 2020; 13(2):974-982. doi: 10.5958/0974-360X.2020.00182.1.
5.    Ansori ANM, Kharisma VD, Fadholly A, Tacharina MR, Antonius Y, Parikesit AA. Severe acute respiratory syndrome coronavirus-2 emergence and its treatment with alternative medicines: A review. Res J Pharm Tech. 2021; 14(10).
6.    Prawiro SR, Anam K, Prabowo B, Bramanthi R, Fitrianingsih AA,Hidayati DYNH, Imawati S, Fitria E, Winarsih S. Generating the Responses Immune with Honey, Saussurea costus, and Nigella Sativa in Cellular and Humoral May Resolve COVID-19?. Sys Rev Pharm 2021;12(1):1588-1593.
7.    Zhao T, Li Sj, Zhang ZX, Zhang ML, Shi QW. Chemical constituents from the genus Saussurea and their biological activities. Heterocycl. Commun. 2017; 23(5). DOI:10.1515/hc-2017-0069.
8.    O'Boyle, NM, Banck M, James CA. Open Babel: An open chemical toolbox. J Cheminform. 2011; 3(33).
9.    Mooers BH. Simplifying and enhancing the use of PyMOL with horizontal scripts. Protein Sci. 2016; 25: 1873–1882.
10.    Baran D, Pszolla MG, Lapidoth GD, Norn C, Dym O, Unger T, Albeck S, Tyka MD, Fleishman SJ. Principles forcomputational design of binding antibodies. Proc. Natl. Acad. Sci. U. S.A. 2017; 114: 10900−10905.
11.    Corominas-Faja B, Santangelo E, Cuyàs E, Micol V, Joven J, Ariza X. Computer-aided discovery of biological activity spectra for anti-aging and anti-cancer olive oil oleuropeins. Biomed Res Int. 2014; 6:731–41.
12.    Basanagouda M, Jadhav VB, Kulkarni MV and Rao RN. Computer aided prediction of biological activity spectra: study of correlation between predicted and observed activities for coumarin-4-acetic acids. Indian Journal of Pharmaceutical Sciences. 2011; 73(1): 88.
13.    Fadholly A, Ansori ANM, Kharisma VD, Rahmahani J, Tacharina MR. Immunobioinformatics of Rabies Virus in Various Countries of Asia: Glycoprotein Gene. Res J Pharm Technol. 2021; 14(2): 883-886. doi: 10.5958/0974-360X.2021.00157.8.
14.    Mishra A, Bhatti R, Singh A, Singh Ishar MP. Ameliorative effect of the cinnamon oil from Cinnamomum zeylanicum upon early stage diabetic nephropathy. Planta Med. 2010; 76: 412–417.
15.    Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the rule of 5 and drugability. Adv Drug Deliv Rev. 2016; 101: 89–98.
16.    Pollastri MP. Overview on the rule of five. Curr Protoc Pharmacol. 2010; (Suppl. 49): 1–8.
17.    Chinthakunta N, Cheemanapalli S, Chinthakunta S, Anuradha CM and Chitta SK . A new insight into identifcation of in silico analysis of natural compounds targeting GPR120. Netw. Model. Anal. Heal. Inform. Bioinform. 2018; 7: 1–21.
18.    Cob-Calan NN, Chi-Uluac LA, Ortiz-Chi F, Cerqueda-García D, Navarrete-Vázquez G, Ruiz-Sánchez E, and Hernández-Núñez E. Molecular docking and dynamics simulation of protein beta-tubulin and antifungal cyclic lipopeptides. Molecules. 2019; 24(18): 3387.
19.    de Ruyck J, Brysbaert G, Blossey R, Lensink MF. Molecular docking as a popular tool in drug design, an In silico travel. Adv. Appl. Bioinform. Chem. 2016; 9: 1–11.
20.    Liu Z, Du J, Fang J, Yin Y, Xu G, Xie L. DeepScreening: a deep learning-based screening web  server for accelerating drug discovery. 2019: Database (Oxford).
21.    Hassan NM, Alhossary AA, Mu Y, Kwoh CK. Protein-Ligand Blind Docking Using QuickVina-W With Inter-Process Spatio-Temporal Integration. Scientific Reports. 2017; 7: 15451.
22.    Proboningrat A, Kharisma VD, Ansori ANM, Rahmawati R, Fadholly A, Posa GAV, Sudjarwo SA, Rantam FA, Achmad AB. In silico Study of Natural inhibitors for Human papillomavirus-18 E6 protein. Res J Pharm Technol. 2022; 15(3):1251-6. doi: 10.52711/0974-360X.2022.00209.
23.    Laskowski RA Swindells MB. LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery. Journal of Chemical Information and Modeling. 2011; 51: 2778-2786.
24.    Kharisma VD, Aghata A, Ansori ANM, Widyananda MH, Rizky WC, Dings TGA, Derkho M, Lysakova I, Antonius Y, Rosadi I, Zainul R. Herbal combination from Moringa oleifera Lam. and Curcuma longa L. as SARS-CoV-2 antiviral via dual inhibitor pathway: A viroinformatics approach. J Pharm Pharmacogn Res. 2022; 10(1): 138–146.
25.    Husen SA, Wahyuningsih SPA, Ansori ANM, Hayaza S, Susilo RJK, Winarni D, Punnapayak H, Darmanto W. Antioxidant Potency of Okra (Abelmoschus esculentus Moench) Pods Extract on SOD Level and Tissue Glucose Tolerance in Diabetic Mice. Res J Pharm Technol. 12(12): 5683. doi: 10.5958/0974-360X.2019.00983.1.
26.    Patil RN, Patil RY and Dheeraj Ahirwar. Study of some medicinal plants for antidiabetic activity in alloxan induced diabetes. Pharmacologyonline. 2010; 1: 53-60.
27.    Chaudhari R and Li Z. PyMine: a PyMOL plugin to integrate and visualize data for drug discovery. BMC Res Notes. 2015; 8: 517.
28.    Kharisma VD and Ansori ANM. Construction of Epitope-Based Peptide Vaccine Against SARS-CoV-2: Immunoinformatics Study. J Pure Appl Microbiol. 2020;14(suppl 1): 999-1005.
29.    Husen SA, Setyawan MF, Syadzha MF, Susilo RJK, Hayaza S, Ansori ANM, Alamsjah MA, Ilmi ZN, Wulandari PAC, Pudjiastuti P, Awang P, Winarni D. A Novel Therapeutic effects of Sargassum ilicifolium Alginate and Okra (Abelmoschus esculentus) Pods extracts on Open wound healing process in Diabetic Mice. Research J. Pharm. and Tech 2020; 13(6): 2764-2770. doi: 10.5958/0974-360X.2020.00491.6.
30.    Kharisma VD, Kharisma SD, Ansori ANM, Kurniawan HP, Witaningrum AM, Fadholly A, Tacharina MR. Antiretroviral Effect Simulation from Black Tea (Camellia sinensis) via Dual Inhibitors Mechanism in HIV-1 and its Social Perspective in Indonesia. Res J Pharm Technol. 2021; 14(1): 455-460. doi: 10.5958/0974-360X.2021.00083.4.
31.    Ansori ANM. A mini-review of the medicinal properties of Okra (Abelmoschus esculentus l.) and potential benefit against SARS-CoV-2. Indian J Forensic Med Toxicol. 2021; 15(1): 852. DOI: 10.37506/ijfmt.v15i1.13523.
32.    Ansori ANM, Fadholly A, Proboningrat A, Hayaza S, Susilo RJK, Naw SW, Posa GAV, Yusrizal YF, Sibero MT, Sucipto TH, Soegijanto S. In vitro antiviral activity of Pinus merkusii (Pinaceae) stem bark and cone against dengue virus type-2 (DENV-2). Res J Pharm Technol. 2021; 14(7):3705-8. doi: 10.52711/0974-360X.2021.00641.
33.    Muttaqin SS, Ansori ANM. Candidate inhibitors of SARS-CoV-2 main protease with 3D structures similar to N3. Res J Biotechnol. 2020; 15(11): 55-59.
34.    Husen SA, Ansori ANM, Hayaza S, Susilo RJK, Zuraidah AA, Winarni D, Punnapayak H, Darmanto W. Therapeutic Effect of Okra (Abelmoschus esculentus Moench) Pods Extract on Streptozotocin-Induced Type-2 Diabetic Mice. Res J Pharm Technol. 2019; 12(8):3703-3708. doi: 10.5958/0974-360X.2019.00633.4.
35.    Ansori AN, Kharisma VD, Parikesit AA, Dian FA, Probojati RT, Rebezov M, et al. Bioactive Compounds from Mangosteen (Garcinia mangostana L.) as an Antiviral Agent via Dual Inhibitor Mechanism against SARS-CoV- 2: An In Silico Approach. Pharmacogn J. 2022; 14(1): 85-90.
36.    Wijaya RM, Hafidzhah MA, Kharisma VD, Ansori ANM,Parikesit AA. COVID-19 In Silico Drug with Zingiber officinale Natural Product Compound Library Targeting the Mpro Protein. Makara J Sci. 2021; 25(3). DOI: 10.7454/mss.v25i3.1244
37.    Ansori ANM, Kharisma VD, Solikhah TI. Medicinal properties of Muntingia calabura L.: A Review. Res J Pharm Technol. 2021; 14(8):4509-2. doi: 10.52711/0974-360X.2021.00784.
38.    Aldino M, Maulani R, Probojati R, Kharisma VD, Ansori ANM, Parikesit AA. Potential Vaccine Targets for COVID-19 and Phylogenetic Analysis Based on the Nucleocapsid Phosphoprotein of Indonesian SARS-CoV-2 Isolates. Indones J Pharm. 2021; 32(3): 328-337. DOI: 10.22146/ijp.1497.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available