Author(s): Kamal Kumar, Nida Parveen


DOI: 10.52711/0974-360X.2023.00349   

Address: Kamal Kumar*, Nida Parveen
Departments of Pharmaceutics, Shri Ram Murti Smarak College of Engineering and Technology (Pharmacy) Bareilly, Uttar Pradesh, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 5,     Year - 2023

Clotrimazole, an antifungal medication, has low solubility, gastrointestinal discomfort, and a first pass impact. As a result, in the current study, it was originally manufactured as nanoparticles to promote absorption, and later on, nanoparticles loaded transdermal patches were constructed employing promising nanoparticles. By using the solvent displacement approach, nanoparticles were created with Eudragit RL 100. Formulation F1 – F9 were made with different concentration of Eudragit RL 100 and polyvinyl alcohol and drug content, drug release, entrapment efficiency, and mean particle size were all examined. By adjusting amounts of hydroxy propyl methyl cellulose K100M, polyvinyl alcohol, and polyethylene glycol 400, the optimal formulation was lyophilized to insert these generated nanoparticles into a transdermal patch. The thickness, tensile strength, folding durability, moisture absorption, and moisture content of the resultant patches were all examined, and the drug release was biphasic. First order kinetics, diffusion regulated, and fickian release were used in all formulations. Ex vivo flow experiments on rat skin revealed a high flux of 63.24g/cm2/h compared to pure drug, produced Clotrimazole ointment 39.15g/cm2/h, and prepared Clotrimazole gel 40.01g/cm2/h. The permeability of an Clotrimazole nanoparticle loaded transdermal patch was 2.63 times greater than that of the pure medication. The drug-loaded nanoparticle embedment in the polymeric transdermal patch was clearly visible under scanning electron microscopes. A nanoparticle-loaded Clotrimazole transdermal patch can be utilised successfully as a carrier to improve transdermal penetration and bioavailability.

Cite this article:
Kamal Kumar, Nida Parveen. Development of Nanoparticles of an Antifungal Drug Incorporated in Transdermal patch. Research Journal of Pharmacy and Technology 2023; 16(5):2125-2. doi: 10.52711/0974-360X.2023.00349

Kamal Kumar, Nida Parveen. Development of Nanoparticles of an Antifungal Drug Incorporated in Transdermal patch. Research Journal of Pharmacy and Technology 2023; 16(5):2125-2. doi: 10.52711/0974-360X.2023.00349   Available on:

1.    A. Ali, S. Ahmed, A review on chitosan and its nanocomposites in drug delivery, Int. J. Biol. Macromol. 109 (2018) 273–286, ijbiomac.2017.12.078.
2.    P. Mukhopadhyay, R. Mishra, D. Rana, P.P. Kundu, Strategies for effective oral insulin delivery with modified chitosan nanoparticles: a review, Prog. Polym. Sci. 37 (2012) 1457–1475, 04.004
3.    M.A. Elgadir, S. Uddin, S. Ferdosh, A. Adam, A. Jalal, K. Chowdhury, Z. Islam, ScienceDirect Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems : A review 3 (2014), 10.1016/j.jfda.2014.10.008.
4.    M. Swierczewska, H.S. Han, K. Kim, J.H. Park, S. Lee, Polysaccharide-based nanoparticles for theranostic nanomedicine, Adv. Drug Deliv. Rev. 99 (2016) 70–84,
5.    P.R. Sivashankari, M. Prabaharan, Deacetylation Modification Techniques of Chitin and Chitosan, Elsevier, 2017, 100230- 8.00005-4.
6.    P. Mukhopadhyay, R. Mishra, D. Rana, P.P. Kundu, Strategies for effective oral insulin delivery with modified chitosan nanoparticles: a review, Prog. Polym. Sci. 37 (2012) 1457–1475, 04.004.
7.    Darwhekar G, Jain DK, Patidar VK. Formulation and evaluation of transdermal drug delivery system of clopidogrel bisulfate. Asian J Pharm Life Sci 2011;2231:4423.
8.    Zavoshy R, Noroozi M, Jahanihashemi H. Effect of low calorie diet with rice bran oil on cardiovascular risk factors in hyperlipidemic patients. J Res Med Sci. 2012;17:626–31.
9.    Sejal Patel, Anita P. Patel. Formulation and Evaluation of Benidipine Nanosuspension. Research Journal of Pharmacy and Technology. 2021; 14(8):4111-6. doi: 10.52711/0974-360X.2021.00712.
10.    Maheshwari S, Tiwari RK, Singh L. Green Expertise: Synthesis of Silver Nanoparticles for Wound Healing Application an Overview. Research J. Pharm. and Tech. 2021; 14(2):1149-1154. doi: 10.5958/0974-360X.2021.00206.7.
11.    Wagner H, Kostka KH, Adelhardt W, Schaefer UF. Effects of various vehicles on the penetration of flufenamic acid into human skin. Eur J Pharm Biopharm 2004;58(1):121-9.
12.    Kulkarni RV, Mutalik S, Hiremath D. Effect of plasticizers on the permeability and mechanical properties of Eudragit films fortransdermal application. Ind J Pharm Sci 2002;64(1):28-31.
13.    P. Mukhopadhyay, R. Mishra, D. Rana, P.P. Kundu, Strategies for effective oral insulin delivery with modified chitosan nanoparticles: a review, Prog. Polym. Sci. 37 (2012) 1457–1475, 04.004.
14.    Mukherjee B, Kanupriya MS, Das S, Patra B. Sorbitan monolaurate 20 as a potential skin permeation enhancer in transdermal patches. J Appl Res 2005;1:96-108.
15.    Boddeda B, Mohan K, Jhansi G, Harani A, Vijaya Ratna J, Srinivasa Rao Y. Ibuprofen-loaded acrylate polymeric nanosuspensions: characterization, In vitro and in vivo anti-inflammatory activity. Pharm Nanotechnol 2015;3(2):101-10.
16.    Verma P, Pathak K. Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation. Nanomedicine 2012;8(4):489-96.
17.    Tekade AR, Gattani SG. Investigation on Physical-Mechanical properties of natural polymer films. Int J Pharm Tech Res 2010;2(1):106-12.
18.    Paolino D, Celia C, Trapasso E, Cilurzo F, Fresta M. Paclitaxel-loaded ethosomes®: potential treatment of squamous cell carcinoma, a malignant transformation of actinic keratoses. Eur J Pharm Biopharm 2012;81(1):102-12.
19.    Lecomte F, Siepmann J, Walther M, MacRae RJ, Bodmeier R. Polymer blends used for the aqueous coating of solid dosage forms: importance of the type of plasticizer. J Control Release 2004;99(1):1-3.
20.    Zhang X, Wang Y, Wang J, Wang Y, Li S. Effect of pore former on the properties of casted film prepared from blends of Eudragit® NE 30 D and Eudragit® L 30 D-55. Chem Pharm Bull 2007;55(8):1261-3.
21.    Basu B, Garala K, Tyagi M, Prabhushankar GL, Babu PR. Formulation and In vitro evaluation of periodontal films containing metronidazole. Res J Pharm Dosage Forms Technol 2009;1(3):240-3.
22.    Boddeda B, Suhasini MS, Niranja P, Ramadevi M, Anusha N. Design, evaluation and optimization of fluconazole transdermal patch by 2 2 factorial method. Der Pharmacia Lettre 2016;8(5):280-7.
23.    Garala KC, Shinde AJ, Shah PH. Formulation and In vitro characterization of monolithic matrix transdermal systems using HPMC/Eudragit S 100 polymer blends. Int J Pharm Pharm Sci 2009;1(1):108-20.
24.    Ubaidulla U, Reddy MV, Ruckmani K, Ahmad FJ, Khar RK. Transdermal therapeutic system of carvedilol: effect of hydrophilic and hydrophobic matrix on In vitro and in vivo characteristics. Aaps Pharm Sci Tech 2007;8(1):E13-20.
25.    Awen BZ, Katakam P, Rao CB, Mohammed SA, Alokbe TO. Design and In vitro evaluation of controlled release cephalexin subgingival films using natural biodegradable polymer. Recent Res Sci Technol 2010;2(4):6-11.
26.    Freitas C, Muller RH. Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase. Eur J Pharm Biopharm. 1999;47(2):125-32. doi: 10.1016/s0939-6411(98)00074-5, PMID 10234536.
27.    Uner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine. 2007;2(3):289-300. PMID 18019829.
28.    Sarisozen C, Vural I, Levchenko T, Hincal AA, Torchilin VP. PEG-PE-based micelles co-loaded with paclitaxel and cyclosporine A or loaded with paclitaxel and targeted by anticancer antibody overcome drug resistance in cancer cells. Drug Delivery.2012; 19: 169-176.
29.    Kumar GP, Krishna KG. Nanosuspensions: The solution to deliver hydrophobic drugs. Int J Drug Deliv. 2011;3(4):546–57.
30.    Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Ind J Pharm Sci. 2009 Jul-Aug;71(4):349-58. doi: 10.4103/0250-474X.57282.
31.    Curr AEB. Transdermal Drug Delivery: Penetration Enhancement Techniques Heather. Drug Delivery. 2005; 2: 23-33.
32.    Mortazavi SA, Aboofazeli R. An investigation into the effect of various penetration enhancers on percutaneous absorption of piroxicam. Iranian Journal of Pharmaceutical Research. 2003; 135-140.
33.    Vaibhav J, Singh G, Rana A C, Saini S, Singla V. Emulgel: A comprehensive review on recent advancement on topical drug delivery. International Research Journal of Pharmacy 2011; 2(11): 66-70.
34.    Gupta DK, Sharma SK, Gaur PK, Singh AP. Lovastatin Loaded Solid lipid nanoparticles for Transdermal delivery: In vitro Characterization.  Research Journal of Pharmacy and Technology. 2022; 15(3):1085-9. doi: 10.52711/0974-360X.2022.00181.
35.    Sanjay A. Nagdev, Omprakash Agrawal, Md. Rageeb Md. Usman. Transdermal Drug Delivery System: An Overview. Research Journal of Pharmacy and Technology. 2022; 15(3):1371-7. doi: 10.52711/0974-360X.2022.00229.
36.    Deepika E, Santhy KS. In vitro Antioxidant and Antidiabetic activity of Silver Nanoparticles Synthesized using Catharanthus roseus leaves. Research Journal of Pharmacy and Technology. 2022; 15(3):989-7. doi: 10.52711/0974-360X.2022.00165.
37.    Monika M, K. Krishna Prema. Phytochemical analysis of commercially available Spirulina, their activities and Biosynthesis of Nanoparticles. Research Journal of Pharmacy and Technology. 2021; 14(12):6189-3. doi: 10.52711/0974-360X.2021.01071.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available