Author(s): Madhu Shree G, Felshia Sherlin S, Madhavan S, Jeyanth Allwin S. I


DOI: 10.52711/0974-360X.2023.00340   

Address: Madhu Shree G, Felshia Sherlin S, Madhavan S, Jeyanth Allwin S. I*
Department of Food Technology, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil - 626126, Srivilliputtur, Tamilnadu, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 4,     Year - 2023

This review deals with the structural and functional properties of sericin and its application in the food industry to enhance the food preservation. Sericin is a globular protein that contains silk fibre from the bombyx mori silkworm case. It has 18 amino acids. The proteins had been utilized in space travel food. Sericin is hydrophilic in nature and shows a physiological impact on the gastrointestinal system. Sericin contains different microbiology properties which allow us to apply it to different fields. Sericin can be attributed to three structures such as sericin A, sericin B, and sericin C. Comparison of extraction methods, extraction with steam using autoclave method is more sustainable. Sericin joins with properties such a gelling property, sol-gel change, isoelectric pH, dissolvability of sericin, and sun–nuclear weight. Sericin inhibits the growth of microorganisms such as S.aureus as gram-positive microorganisms and E.coli as gram-negative microorganisms. It provides a major antioxidant property by inhibiting tyrosinase enzymes. Sericin is an intriguing contender to impede the browning impact in food items without the expansion of manufactured cell antioxidant compounds. Food products prepared with sericin helps in diabetics and keeping up with the diet. The utilization of edible coating or films using sericin not only imparts antibrowning, antimicrobial, and antioxidant properties but also improves the nutritional properties of the food product. Though the production rate of sericin is high in India, a very few attempts have been made to utilize sericin in food applications. Hence utilizing sericin in food applications provide several advantages and improves its scope in food industry.

Cite this article:
Madhu Shree G, Felshia Sherlin S, Madhavan S, Jeyanth Allwin S. I. Silk Sericin and its Food application: A Review. Research Journal of Pharmacy and Technology 2023; 16(4):2068-4. doi: 10.52711/0974-360X.2023.00340

Madhu Shree G, Felshia Sherlin S, Madhavan S, Jeyanth Allwin S. I. Silk Sericin and its Food application: A Review. Research Journal of Pharmacy and Technology 2023; 16(4):2068-4. doi: 10.52711/0974-360X.2023.00340   Available on:

1.    Ghosh S, S. Rao R, Nambiar KS, Haragannavar VC, Augustine D, Sowmya S V. Sericin, a dietary additive: Mini review. Journal of Medicine Radiology Pathology & Surgery. 2019; 6(1):4-8. doi:10.15713/ins.jmrps.153
2.    S. C. Kundu, B. C. Dash, R. Dash, and D. L. Kaplan. Natural protective glue protein, sericin bioengineered by silkworms: potential for biomedical and biotechnological applications. Progress in Polymer Science. 2008; 33(10), pp. 998–1012, 2008.
3.    Miguel GA, Álvarez-López C. Extraction and antioxidant activity of sericin, a protein from silk. Brazilian Journal of Food Technology. 2020; 23:1-14. doi:10.1590/1981-6723.05819
4.    Sirimungkararat S, Saksirirat W, Nopparat T, Natongkham A. Edible products from eri and mulberry silkworms in Thailand. For insects as food humans bite back. Published online 2010:189-200.
5.    Padamwar MN, Pawar AP. Silk sericin and its applications: A review. Journal of Scientific and Industrial Research. 2004; 63(4):323-329
6.    Naidu N, Sudheer Kumar G, Sivakrishna K, Anjinaik k,  Praveen Kumar L, Sneha G. . Anti microbial and antioxidant evolution of aqueous extract of Terminalia chebula using disc diffusion, H2O2 scavenging methods.Asian Journal of research in Pharmaceutical sciences. 2017; 7(2): 112-114. Doi: 10.5958/2231-5659.2017.00017.0
7.    Archana R. Pawar, Dattaprasad N. Vikhe, R. S. Jadhav. Recent Advances in Extraction Techniques of Herbals – A Review. Asian Journal of research in Pharmaceutical sciences. 2020; 10(4):287-292. Doi: 10.5958/2231-5659.2020.00050.8
8.    Silva VR, Ribani M, Gimenes ML, Scheer AP. High molecular weight sericin obtained by high temperature and ultrafiltration process. Procedia Eng. 2012; 42:833-841. doi:10.1016/j.proeng.2012.07.476
9.    Rocha LKH, Favaro LIL, Rios AC, et al. Sericin from Bombyx mori cocoons. Part I: Extraction and physicochemical-biological characterization for biopharmaceutical applications. Process Biochemistry. 2017; 61:163-177. doi:10.1016/j.procbio.2017.06.019
10.    Lamboni L, Gauthier M, Yang G, Wang Q. Silk sericin: A versatile material for tissue engineering and drug delivery. Biotechnology Advances. 2015; 33(8):1855-1867. doi:10.1016/j.biotechadv.2015.10.014
11.    Jo YY, Kweon H, Oh JH. Sericin for tissue engineering. Applied Sciences. 2020; 10(23):1-17. doi:10.3390/app10238457
12.    Insperger T, Stépán G. Engineering Applications. Applied Mathematical Sciences. 2011; 178(5):93-149. doi:10.1007/978-1-4614-0335-7_5
13.    Wang R, Zhu Y, Shi Z, Jiang W, Liu X, Ni QQ. Degumming of raw silk via steam treatment. Journal of Cleaner Production. 2018; 203:492-497. doi:10.1016/j.jclepro.2018.08.286
14.    Aramwit P, Towiwat P, Srichana T. Anti-inflammatory potential of silk sericin. Natural Products Communications. 2013; 8(4):501-504. doi:10.1177/1934578x1300800424
15.    Jo YN, Bae DG, Um IC. The Effect of Extraction Conditions and Film Side on the Molecular Conformation of Silk Sericin Film. International Journal of Industrial Entomology. 2013; 26(2):113-118. doi:10.7852/ijie.2013.26.2.113
16.    Kunz RI, Brancalhão RMC, Ribeiro LDFC, Natali MRM. Silkworm Sericin: Properties and Biomedical Applications. Biomed Research International. 2016. doi:10.1155/2016/8175701
17.    Xue R, Liu Y, Zhang Q, et al. Shape changes and interaction mechanism of Escherichia coli cells treated with sericin and use of a sericin-based hydrogel for wound healing. Applied and Environmental Microbiology. 2016; 82(15):4663-4672. doi:10.1128/AEM.00643-16
18.    Safa Mohammed Sadiq, Amtul Kareem, Nuha Rasheed, Abdul Saleem Mohammad. Pharmaceutical Importance of Anti-Microbials. Asian Journal of Pharmacy and technology. 2017; 7(1): 7-10. Doi: 10.5958/2231-5713.2017.00002.2
19.    Thiruppathi C, Kumaravel P,  Duraisamy R, Prabhakaran A K,  Jeyanthi T,Sivaperumal R, Karthick P A. Biofabrication of Silver nanoparticles using Cocculus hirsutus leaf extract and their antimicrobial efficacy. Silver nanoparticles, Cocculus hirsutus, Antimicrobial activity. Asian Journal of Pharmacy and technology. 2013;3( 3):93-97.
20.    Pattabiraman K., Muthukumaran P. Antidiabetic and Antioxidant Activity of Morinda tinctoria roxb Fruits Extract in Streptozotocin-Induced Diabetic Rats. Asian Journal of Pharmacy and technology. 2011; 1(2):34-39
21.    Saira Sehar, Amiza, I. H Khan. Role of ZnO Nanoparticles for improvement of Antibacterial Activity in Food Packaging. Asian Journal of Pharmaceutical Research. 2021; 11(2):128-1. Doi: 10.52711/2231-5691.2021.00024
22.    Selvakumar K, Madhan R, Srinivasan G, Baskar V. Antioxidant Assays in Pharmacological Research. . Asian Journal of Pharmacy and technology. 2011; 1(4): 99-103.
23.    Sapru S, Ghosh AK, Kundu SC. Non-immunogenic, porous and antibacterial chitosan and Antheraea mylitta silk sericin hydrogels as potential dermal substitute. Carbohydrate Polymer. 2017; 167:196-209. doi:10.1016/j.carbpol.2017.02.098
24.    Shah A, Ali Buabeid M, Arafa ESA, Hussain I, Li L, Murtaza G. The wound healing and antibacterial potential of triple-component nanocomposite (chitosan-silver-sericin) films loaded with moxifloxacin.  International Journal of Pharmaceutics. 2019; 564:22-38. doi:10.1016/j.ijpharm.2019.04.046
25.    Zhao R, Li X, Sun B, et al. Electrospun chitosan/sericin composite nanofibers with antibacterial property as potential wound dressings. International Journal of Biological Macromolecules. 2014; 68(Cdc):92-97. doi:10.1016/j.ijbiomac.2014.04.029
26.    He H, Cai R, Wang Y, et al. Preparation and characterization of silk sericin/PVA blend film with silver nanoparticles for potential antimicrobial application. International Journal of Biological Macromolecules. 2017; 104:457-464. doi:10.1016/j.ijbiomac.2017.06.009
27.    Muhammad Tahir H, Saleem F, Ali S, et al. Synthesis of sericin-conjugated silver nanoparticles and their potential antimicrobial activity. Journal of Basic Microbiology. 2020; 60(5):458-467. doi:10.1002/jobm.201900567
28.    Chaisabai W, Khamhaengpol A, Siri S. Sericins of mulberry and non-mulberry silkworms for eco-friendly synthesis of silver nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology. 2018; 46(3):536-543. doi:10.1080/21691401.2017.1328686
29.    Ghensi P, Bettio E, Maniglio D, et al. Dental implants with anti-biofilm properties: A pilot study for developing a new sericin-based coating. Materials (Basel). 2019; 12(15):1-15. doi:10.3390/ma12152429
30.    Shivani Sharma, Manpreet Rana, Hitesh Kumar , Bharat Parashar. It’s era to move towards nature for getting beneficial effects of plants having Antioxidant activity to fight against deleterious diseases. Asian Journal of Pharmacy. 2013;3(2): 103-106.
31.    Mrunali Potbhare, Nikhita Phendarkar, Deepak Khobragade. In vitro Evaluation of Antioxidant Potential of N –Acetyl-D-Glucosamine. Asian Journal of research in Pharmaceutical sciences. 2017; 7(2): 120-122. Doi: 10.5958/2231-5659.2017.00019.4.
32.    Aramwit P, Napavichayanum S, Pienpinijtham P, Rasmi Y, Bang N. Antibiofilm activity and cytotoxicity of silk sericin against Streptococcus mutans bacteria in biofilm: An in vitro study. Journal of Wound Care. 2020; 29(Cdc):325-S35. doi:10.12968/jowc.2020.29.Sup4.S25
33.    Read M. Biomedical Reports. Published online 2014:1-9.
34.    Aramwit P, Damrongsakkul S, Kanokpanont S, Srichana T. Properties and antityrosinase activity of sericin from various extraction methods. Biotechnology and Applied Biochemistry. 2010; 55(2):91-98. doi:10.1042/ba20090186
35.    Ma M, Hussain M, Dong S, Zhou W. Characterization of the pigment in naturally yellow-colored domestic silk. Dye Pigment. 2016; 124:6-11. doi:10.1016/j.dyepig.2015.08.003
36.    Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry. 2002; 13(10):572-584. doi:10.1016/S0955-2863(02)00208-5
37.    Dash R, Acharya C, Bindu PC, Kundu SC. Antioxidant potential of silk protein sericin against hydrogen peroxide-induced oxidative stress in skin fibroblasts. Biochemistry and Molecular Biology Journal. 2008; 41(3):236-241. doi:10.5483/bmbrep.2008.41.3.236
38.    Kumar JP, Mandal BB. Antioxidant potential of mulberry and non-mulberry silk sericin and its implications in biomedicine. Free Radical Biology and Medicine. 2017; 108:803-818. doi:10.1016/j.freeradbiomed.2017.05.002
39.    Jena K, Pandey JP, Kumari R, Sinha AK, Gupta VP, Singh GP. Free radical scavenging potential of sericin obtained from various ecoraces of tasar cocoons and its cosmeceuticals implication. International Journal of Biological Macromolecules. 2018; 120(Cdc):255-262. doi:10.1016/j.ijbiomac.2018.08.090
40.    Banagozar Mohammadi A, Torbati M, Farajdokht F, et al. Sericin alleviates restraint stress induced depressive- and anxiety-like behaviors via modulation of oxidative stress, neuroinflammation and apoptosis in the prefrontal cortex and hippocampus. Brain Research. 2019; 1715:47-56. doi:10.1016/j.brainres.2019.03.020
41.    Miyamoto Y, Oishi K, Yukawa H, et al. Cryopreservation of human adipose tissue-derived stem/progenitor cells using the silk protein sericin. Cell Transplantation. 2012; 21(2-3):617-622. doi:10.3727/096368911X605556
42.    Ohnishi K, Murakami M, Morikawa M, Yamaguchi A. Effect of the silk protein sericin on cryopreserved rat islets. Journal of Hepato-Biliary-Pancreatic Sciences. 2012; 19(4):354-360. doi:10.1007/s00534-011-0415-4
43.    Isobe T, Ikebata Y, Onitsuka T, et al. Cryopreservation for bovine embryos in serum-free freezing medium containing silk protein sericin. Cryobiology. 2013; 67(2):184-187. doi:10.1016/j.cryobiol.2013.06.010
44.    Rajput SK, Kumar Singh M. Sericin – A unique biomaterial. IOSR Journal of Polymer and Textile Engineering. 2015; 2(3):2348-181. doi:10.9790/019X-0232935
45.    Xing R, Wang F, Dong L, et al. Inhibitory effects of Na7PMo11CuO40 on mushroom tyrosinase and melanin formation and its antimicrobial activities. Food Chemistry. 2016; 197:205-211. doi:10.1016/j.foodchem.2015.10.119
46.    Chlapanidas T, Faragò S, Lucconi G, Perteghella S, Galuzzi M, Mantelli M, Avanzini MA, Tosca MC, Marazzi M, Vigo D. Sericins exhibit ROS-scavenging, anti-tyrosinase, anti-elastase, and in vitro immunomodulatory activities. International Journal of Biological Macromolecules. 2013; 58: 47−56
47.    Puangphet A, Jiamyangyuen S, Tiyaboonchai W, Thongsook T. Amino acid composition and anti-polyphenol oxidase of peptide fractions from sericin hydrolysate. International Journal of Food Science & Technology. 2018; 53(4):976-985. doi:10.1111/ijfs.13672
48.    R. Devi, M. Deori, and D. Devi. Evaluation of antioxidant activities of silk protein sericin secreted by silkworm Antheraea assamensis (Lepidoptera: Saturniidae). Journal of Pharmacy Research. 2011; 4(12), pp. 4688–4691.
49.    Reddy V, Urooj A, Kumar A. Evaluation of antioxidant activity of some plant extracts and their application in biscuits. Food Chemistry. 2005; 90(1-2):317-321. doi:10.1016/j.foodchem.2004.05.038
50.    Agyei, Dominic, Kasargod, Bhuvana K, He L. A scalable bioprocess for degradation of dairy proteins using immobilized cell-envelope proteinases. Chemeca. 2014; (July 2015). doi:10.13140/RG.2.1.2599.7924
51.    Sasaki M, Yamada H, Kato N. Consumption of silk protein, sericin elevates intestinal absorption of zinc, iron, magnesium and calcium in rats. Nutrition Research. 2000; 20(10):1505-1511. doi:10.1016/s0271-5317(00)80031-7
52.    Lalit Jajpura AR. The Biopolymer Sericin: Extraction and Applications. Journal of Textile Science and Engineering. 2015; 05(01):1-5. doi:10.4172/2165-8064.1000188
53.    Samaranayaka AGP, Li-Chan ECY. Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. Journal of Functional Foods. 2011; 3(4):229-254. doi:10.1016/j.jff.2011.05.006
54.    Takechi T, Maekawa ZI, Sugimura Y. Use of Sericin as an Ingredient of Salad Dressing. Food Science and Technology Research. 2011; 17(6):493-497. doi:10.3136/fstr.17.493
55.    Jadhav Sameer S., Salunkhe Vijay R. , Magdum Chandrakant S.. Daily Consumption of Antioxidants:-Prevention of Disease is better than Cure.Asian Journal of pharmaceutical research .2013; 3(1): 33-39.
56.    Gupta D, Chaudhary H, Gupta C. Sericin based bioactive coating for polyester fabric. Indian Journal of Fibre & Textile Research. 2015; 40(1):70-80.
57.    Takechi T, Takamura H. Development of bread supplemented with the silk protein sericin. Food Science and Technology Research. 2014; 20(5):1021-1026. doi:10.3136/fstr.20.1021
58.    Liu L, Cai R, Wang Y, Tao G, Ai L, Wang P, Yang M, Zuo H, Zhao P, He H. Polydopamine-assisted silver nanoparticle self-assembly on sericin/agar film for potential wound dressing application. International Journal of Molecular Sciences. 2018; 19:2875. doi: 10.3390/ijms19102875

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available