Author(s): ravind M, Sivaram Kumar P, Arifa Begum SK

Email(s): arifashaik2007@gmail.com

DOI: 10.52711/0974-360X.2023.00337   

Address: ravind M1, Sivaram Kumar P2, Arifa Begum SK3*
1,2Department of Pharmaceutics, Chalapathi Institute of Pharmaceutical Sciences, Lam, Guntur - 522 034, Andhra Pradesh, India.
3Department of Pharmaceutics, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada - 520 010, Andhra Pradesh, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 4,     Year - 2023


ABSTRACT:
Dendrimers and dendrimer based nanocarriers are gaining much attention in the field of therapeutic drug delivery owing to their advantages such as ease of multifunctionalization, well-defined chemical structure, near-to-monodispersity, as well as multivalency. Dendrimers are used as vectors in gene therapy, solubility enhancers and blood substitutes. Dendrimers have also been investigated as genetic material carriers with potential diagnostic and therapeutic applications. In the current review, an overview of the different types, synthesis methods, unique structural properties, factors affecting properties and applications of dendrimers. Further, the major concerns and future perspectives of the dendrimers have been discussed. The surface-modified dendrimers have been succeeded in their clinical translation and making remarkable progress in the phase of clinical trials. Extensive research is required in order to foster a robust large-scale synthetic method with adequate reproducibility. Significant studies necessarily be carriedout to find the correlation between the degree of surface modification (product quality) and their biological behavior, like pharmacokinetic profiles, therapeutic efficiency, safety and toxicity. In conclusion, dendrimers and dendritic nanoparticles have prospective insight in the arena of health sector in the forthcoming years.


Cite this article:
ravind M, Sivaram Kumar P, Arifa Begum SK. An Overview of Dendrimers as Novel Carriers in Drug Delivery. Research Journal of Pharmacy and Technology 2023; 16(4):2051-6. doi: 10.52711/0974-360X.2023.00337

Cite(Electronic):
ravind M, Sivaram Kumar P, Arifa Begum SK. An Overview of Dendrimers as Novel Carriers in Drug Delivery. Research Journal of Pharmacy and Technology 2023; 16(4):2051-6. doi: 10.52711/0974-360X.2023.00337   Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-4-86


REFERENCES:
1.    Shahi SR, Kulkarni MS, Karva GS, Giram PS, Gugulkar RR. Dendrimers,International Journal of Pharmaceutical Sciences Review and Research, 2015;33(1): 187-198.
2.    Kopecký D, Škodová J, Laser-induced transfer of organic materials, Advances in Laser and Optics Research, 2015; 11: 47–72.
3.    Egon Buhleier, Winfried Wehner, Fritz Vogtle, “Cascade”- and “nonskid-chain-like” synthesis of molecular cavity topologies, Synthesis, 1978;2:155–158.
4.    Newkome GR, Yao ZQ, Baker GR, Gupta VK, Cascade molecules: a new approach to micelles, A[27]-Arborol, The Journal of Organic Chemistry, 1985;50(11):2003–2004.
5.    Sakthivel T, Florence AT, Adsorption of amphipathic dendrons on polystyrene nanoparticles,International Journal of Pharmaceutics, 2003;254(1):23–26.
6.    Tripathy S, Das MK, Dendrimers and their applications as novel drug delivery carriers. Journal of Applied Pharmaceutical Science,2013;3(9):142–149.
7.    Zimmerman SC, Lawless LJ, Supramolecular chemistry of dendrimers. Topics in Current Chemistry, 2001;217:95–120.
8.    Hawker CJ, Fréchet JMJ, Preparation of polymers with controlled molecular architecture.A new convergent approach to dendritic macromolecules,Journal of the American Chemical Society, 1990;112(21):7638–7647.
9.    Psimadas D, Georgoulias P, Valotassiou V, Loudos G, Molecular nanomedicine towards cancer: 111In-labeled nanopaticles, Journal of Pharmaceutical Sciences, 2012;101(7):2271–2280.
10.    Vedha Hari BN, Kalaimagal K, Porkodi R, Gajula PK, Ajay JY, Dendrimer: Globular nanostructured materials for drug delivery. International Journal of PharmTech Research, 2012;4(1):432–451.
11.    Priya P, Jeyapragash RS, Dendrimer: a novel polymer,International Journal of Research in Pharmacy and Chemistry, 2013;3(2):495–501.
12.    Garg T, Singh O, Arora S, Murthy RSR, Dendrimer- a novel scaffold for drug delivery, IInternational Journal of Pharmaceutical Sciences Review and Research, 2011;7(2):211–220.
13.    Gupta U, Agashe HB, Jain NK, Polypropylene imine dendrimer mediated solubility enhancement: effect of pH and functional groups of hydrophobes. Journal of Pharmacy and Pharmaceutical Sciences, 2007;10(3):358–367.
14.    Wang D, Imae T, Fluorescence emission from dendrimers and its pH dependence, Journal of the American Chemical Society, 2004;126(41):13204–13205.
15.    Chai M, Niu Y, Youngs WJ, Rinaldi PL, Structure and conformation of DAB dendrimers in solution via multidimensional NMR techniques,Journal of the American Chemical Society 2001;123(20):4670–4678.
16.    Sakthivel T, Toth I FA, Synthesis and physicochemical properties of lipophilic polyamide dendrimers,Pharmaceutical Research, 1998;15(5):776–782.
17.    Nishiyama N, Kataoka K, Current state, achievementsand future prospects of polymeric micelles as nanocarriers for drug and gene delivery,Pharmacology  and  Therapeutics, 2006;112(3):630–648.
18.    Na M, Yiyun C, Tongwen X, Yang D, Xiaomin W, Zhenwei L, et al., Dendrimers as potential drug carriers. Part II. Prolonged delivery of ketoprofen by in vitro and in vivo studies. European Journal of Medicinal Chemistry, 2006;41(5):670–674.
19.    Sadler K, Tam JP, Peptide dendrimers: applications and synthesis,Reviews in Molecular Biotechnology, 2002;90(3–4):195–229.
20.    Antoni P, Hed Y, Nordberg A, Nyström D, Von Holst H, Hult A, et al., Bifunctional dendrimers: from robust synthesis and accelerated one-pot postfunctionalization strategy to potential applications, Angewandte Chemie International Edition,  2009;48(12):2126–2130.
21.    Tupally KR, Kokil GR, Thakur SS, Singh P, Parekh HS, Dendrimers, Control Release Systems: Advances in Nanobottles and Active Nanoparticles, 2015;48(1):259–285.
22.    Svenson S, Tomalia DA, Dendrimers in biomedical applications - reflections on the field,Advanced Drug Delivery Reviews, 2005;57(15):2106–2129.
23.    Bernd HZ, Simon PM, Andreas GS, Ijeoma FU, The lower-generation polypropylenimine dendrimers are effective gene-transfer agents,Pharmaceutical Research, 2002;V19(7):960–967.
24.    Dufès C, Uchegbu IF, Schätzlein AG, Dendrimers in gene delivery, Advanced Drug Delivery Reviews, 2005;57:2177–2202.
25.    Froehling PE, Dendrimers and dyes - a review, Dyes and Pigments, 2001;48:187–195.
26.    Calin MA, Parasca SV, Photodynamic therapy in oncology, Journal of Optoelectronics and Advanced Materials, 2006;8(3):1173–1179.
27.    Dave KK, Vamsi VV, Dendritic polymers for dermal drug delivery, Therapeutic Delivery, 2017;8(12):1077–1096.
28.    Madaan K, Kumar S, Poonia N, Lather V, Pandita D, Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues, Journal of Pharmacy and Bioallied Sciences, 2014;6(3):139–150.
29.    Yavuz B, Pehlivan SB, Vural I, Ünlü N. In Vitro/In Vivoevaluation of dexamethasone - PAMAM dendrimer complexes for retinal drug delivery. Journal of Pharmaceutical Sciences, 2015;104(11):3814–3823.doi: 10.1002/jps.24588.
30.    Nasr M, Najlah M, D’Emanuele A, Elhissi A, PAMAM dendrimers as aerosol drug nanocarriers for pulmonary delivery via nebulization. International Journal of Pharmaceutics, 2014;461(1–2):242–250. doi: 10.1016/j.ijpharm.2013.11.023.
31.    Inapagolla R, Guru BR, Kurtoglu YE, Gao X, Lieh-Lai M, Bassett DJP, et al.,In vivo efficacy of dendrimer-methylprednisolone conjugate formulation for the treatment of lung inflammation,International Journal of Pharmaceutics, 2010;399(1–2):140–147. doi: 10.1016/j.ijpharm.2010.07.030.
32.    Mishra V, Jain NK, Acetazolamide encapsulated dendritic nano-architectures for effective glaucoma management in rabbits. International Journal of Pharmaceutics, 2014;461(1–2):380–390. doi : 10.1016/j.ijpharm.2013.11.043.
33.    Kulhari H, Pooja D, Singh MK, Chauhan AS, Optimization of carboxylate-terminated poly(amidoamine) dendrimer-mediated cisplatin formulation,Drug Development and Industrial Pharmacy, 2015;41(2):232–238. doi: 10.3109/03639045.2013.858735.
34.    Kesharwani P, Tekade RK, Jain NK, Generation dependent safety and efficacy of folic acid conjugated dendrimer based anticancer drug formulations,Pharmaceutical Research, 2015;32(4):1438–1450.
35.    Tripathi PK, Gorain B, Choudhury H, Srivastava A, Kesharwani P, Dendrimer entrapped microsponge gel of dithranol for effective topical treatment, Heliyon. 2019;5(3):e01343.
36.    Agrawal P, Gupta U, Jain NK, Glycoconjugate peptide dendrimers-based nanoparticulate system for the delivery of chloroquine phosphate, Biomaterials, 2007;28(22):3349–3359. doi: 10.1016/j.biomaterials.2007.04.004.
37.    Chauhan AS, Sridevi S, Chalasani KB, Jain AK, Jain SK, Jain NK, et al., Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin, Journal of Controlled Release, 2003;90(3):335–343.
38.    Medina SH, El-Sayed ME, Dendrimers as carriers for delivery of chemotherapeutic agents,Chemical Reviews, 2009; 109:3141–3157.
39.    Naylor AM, Goddard WA, Kiefer GE, Tomalia DA, Starburst dendrimers. 5. Molecular shape control, Journal of the American Chemical Society, 1989; 111:2339–2341.
40.    Morgan MT, Carnahan MA, Immoos CE, Ribeiro AA, Finkelstein S, Lee SJ, Grinstaff MW, Dendritic molecular capsules for hydrophobic compounds, Journal of the American Chemical Society, 2003; 125:15485–15489.
41.    Patri AK, Kukowska-Latallo JF, Baker JR Jr, Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and noncovalent drug inclusion complex, Advanced Drug Delivery Reviews, 2005; 57:2203–2214.
42.    Kojima C, Kono K, Maruyama K, Takagishi T, Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs, Bioconjugate Chemistry, 2000; 11:910–917.
43.    Mishra MK, Kotta K, Hali M, Wykes S, Gerard HC, Hudson AP, Whittum-Hudson JA, Kannan RM, PAMAM dendrimer-azithromycin conjugate nanodevices for the treatment of Chlamydia trachomatis infections, Nanomedicine, 2011; 7:935–944.
44.    Gajbhiye V, Ganesh N, Barve J, Jain NK, Synthesis, characterization and targeting potential of zidovudine loaded sialic acid conjugated-mannosylated poly (propyleneimine) dendrimers. European Journal of Pharmaceutical Sciences, 2013; 48:668–679.
45.    Choi SK, Myc A, Silpe JE, Sumit M, Wong PT, McCarthy K, Desai AM, Thomas TP, Kotlyar A, Holl MMB, Dendrimer-based multivalent vancomycin nanoplatform for targeting the drug-resistant bacterial surface, American Chemical Society Nano, 2012; 7:214–228.
46.    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R, Nanocarriers as an emerging platform for cancer therapy, Nature Nanotechnology 2007: 2:751–760.
47.    Zhu J, Xiong Z, Shen M, Shi X, Encapsulation of doxorubicin within multifunctional gadolinium-loaded dendrimer nanocomplexes for targeted theranostics of cancer cells,Royal Society of Chemistry Advances, 2015; 5:30286–30296.
48.    Zhu J, Zheng L, Wen S, Tang Y, Shen M, Zhang G, Shi X, Targeted cancer theranostics using α-tocopheryl succinate-conjugated multifunctional dendrimerentrapped gold nanoparticles, Biomaterials, 2014; 35:7635–7646.
49.    Tam JP, Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system, Proceedings of the National Academy of Sciences of the United States of America,1988; 85:5409–5413.
50.    Tam JP, Recent advances in multiple antigen peptides, Journal of Immunological Methods, 1996; 196:17–32.
51.    Moreno CA, Rodriguez R, Oliveira GA, Ferreira V, Nussenzweig RS, Castro ZRM, Calvo-Calle JM, Nardin E, Preclinical evaluation of a synthetic Plasmodium falciparum MAP malaria vaccine in Aotus monkeys and mice, Vaccine, 1999; 18:89–99.
52.    Nardin EH, Oliveira GA, Calvo-Calle JM, Castro ZR, Nussenzweig RS, Schmeckpeper B, Hall BF, Diggs C, Bodison S, Edelman R, Synthetic malaria peptide vaccine elicits high levels of antibodies in vaccinees of defined HLA genotypes, Journal of  Infectious Diseases, 2000; 182:1486–1496.
53.    Nardin EH, Calvo-Calle JM, Oliveira GA, Nussenzweig RS, Schneider M, Tiercy J-M, Loutan L, Hochstrasser D, Rose K, A totally synthetic polyoxime malaria vaccine containing Plasmodium falciparum B cell and universal T cell epitopes elicits immune responses in volunteers of diverse HLA types, Journal of Immunology, 2001; 166:481–489.
54.    Zhao G, Lin Y, Du L, Guan J, Sun S, Sui H, Kou Z, Chan CC, Guo Y, Jiang S, et al., An M2e-based multiple antigenic peptide vaccine protects mice from lethal challenge with divergent H5N1 influenza viruses. Virology Journal, 2010; 7:1–8.
55.    Defoort J-P, Nardelli B, Huang W, Ho DD, Tam JP, Macromolecular assemblage in the design of a synthetic AIDS vaccine,Proceedings of the National Academy of Sciences of the United States of America, 1999; 89:3879–3883.
56.    Ponchel G, Irache JM, Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract, Advanced Drug Delivery Reviews, 1998; 34:191–219.
57.    Chauhan AS, Sridevi S, Chalasani KB, Jain AK, Jain SK, Jain NK, Diwan PV, Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin,Journal of Controlled Release, 2003; 90:335–343.
58.    Yiyun C, Na M, Tongwen X, Rongqiang F, Xueyuan W, Xiaomin W, Longping W, Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers,Journal of Pharmaceutical Sciences, 2007; 96:595–602.
59.    Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, Meijer EW, Paulus W, Duncan R, Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. Journal of Controlled Release, 2000; 65:133–148.
60.    Duncan R, Izzo L, Dendrimer biocompatibility and toxicity,Advanced Drug Delivery Reviews,  2005; 57:2215–2237.
61.    Kobayashi H, Kawamoto S, Saga T, Sato N, Hiraga A, Konishi J, Togashi K, Brechbiel MW, Micro-MR angiography of normal and intratumoral vessels in mice using dedicated intravascular MR contrast agents with high generation of polyamidoamine dendrimer core: reference to pharmacokinetic properties of dendrimerbased MR contrast agents, Journal of Magnetic Resonance Imaging, 2001; 14:705–713.




Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available