Author(s): Tatik Suteky, Dwatmadji


DOI: 10.52711/0974-360X.2023.00314   

Address: Tatik Suteky*, Dwatmadji
Department of Animal Science, Faculty of Agriculture University of Bengkulu, JL Raya Kandang Limun Bengkulu 38170 Bengkulu, Indonesia.
*Corresponding Author

Published In:   Volume - 16,      Issue - 4,     Year - 2023

The research was performed to observe the effectiveness of silver nanoparticles (AgNPs) incorporate using the leaves Melastoma malabathricumin the ethanolic extract as anti-Haemonchus contortus. To determine the phytochemical content of Melastoma malabathricum, a qualitative phytochemical test was done. An adulticidal or an adult motility test was performed on mature female Haemonchus contortus. Three silver nanoparticle concentrations (AgNPs-Extract 0.2mgml-1, AgNPs-Extract 0.1mgml-1, AgNPs-Extract 0.05mgml-1) and two different ethanol extract Melastoma malabathricum concentrations (200mgml-1 and 100mgml-1) were examined. Albendazole 40mg/ml was used asa standard reference, and for negative control normal using saline water. The phytochemical analysis revealed that the ethanol extract of Melastoma malabathricum contains tannin, flavonoid, terpenoid, and steroid. The silver nanoparticles are identified visually as colour changes in the solution and using an ultraviolet-visible nanophotometer (UV-Vis). The spectrum was examined using a UV-Vis nanophotometer, and it revealed a clear peak around 365nm with a pH of 5.9. In a nematocidal assay on adult Haemonchus contortus, the paralysis time of the worm in silver nanoparticle (AgNPs- Extract 0.2mg/ml) was 8.85 minutes, which was significantly (P0.05) shorter than the control positive (14.07 minutes). Worms died in less than an hour in all treatments, and the negative control worm remained active for up to 2 hours after exposure

Cite this article:
Tatik Suteky, Dwatmadji. The Synthesis AgNPs of Leaves Melastoma malabathricum Extract reduce Adult Haemonchus contortus Motility Assay. Research Journal of Pharmacy and Technology 2023; 16(4):1913-8. doi: 10.52711/0974-360X.2023.00314

Tatik Suteky, Dwatmadji. The Synthesis AgNPs of Leaves Melastoma malabathricum Extract reduce Adult Haemonchus contortus Motility Assay. Research Journal of Pharmacy and Technology 2023; 16(4):1913-8. doi: 10.52711/0974-360X.2023.00314   Available on:

1.    Mpofu TJ, Nephawe KA, Mtileni B. Prevalence of gastrointestinal parasites in communal goats from different agro-ecological zones of South Africa. Vet World. 2020;13(1):26-32. doi:10.14202/vetworld.2020.26-32
2.    Tahir D, Davoust B, Parola P. Vector-borne nematode diseases in pets and humans in the Mediterranean Basin: An update. Vet World. 2019;12(10):1630-1643. doi:10.14202/vetworld.2019.1630-1643
3.    Roeber F, Jex AR, Gasser RB. Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance - An Australian perspective. Parasites and Vectors. 2013;6(1):1-13. doi:10.1186/1756-3305-6-153
4.    Suteky T, Dwatmadji. Ethnoveterinary technology for parasite dewormer to support goat-oil palm integration in Bengkulu Indonesia. J Agric Technol. 2015;11(8):2325-2331.
5.    Ilangopathy M, Palavesam A, Amaresan S, Muthusamy R. Economic Impact of Gastrointestinal Nematodes in Sheep on Meat Production. Int J Livest Res. 2019;(0):1. doi:10.5455/ijlr.20190331051814
6.    Emery DL, Hunt PW, Le Jambre LF. Haemonchus contortus: the then and now, and where to from here? Int J Parasitol. 2016;46(12):755-769. doi:10.1016/j.ijpara.2016.07.001
7.    Sundeep HK, Raju MB V, Dinda SC, Sahu SK. Evaluation of Anthelmintic Activity of Bambusa Arundinacea. Asian J Pharm Tech. 2012;2(2):62-63.
8.    Kumarasingha R, Preston S, Yeo TC, et al. Anthelmintic activity of selected ethno-medicinal plant extracts on parasitic stages of Haemonchus contortus. Parasites and Vectors. 2016;9(1):1-7. doi:10.1186/s13071-016-1458-9
9.    Mravčáková D, Kišidayová S, Kopčáková A, et al. Can the foregut nematode Haemonchus contortus and medicinal plants influence the fecal microbial community of the experimentally infected lambs? PLoS One. 2020;15(6):1-11. doi:10.1371/journal.pone.0235072
10.    Qadir S, Dixit AK, Dixit P. Use of medicinal plants to control Haemonchus contortus infection in small ruminants. Vet World. 2010;3(11):515-518. doi:10.5455/vetworld.2010.515-518
11.    Suteky T, Dwatmadji. The Use of Melastoma malabatricum and Manihot esculenta extract as natural anthelmintic on the Performance of Kacang goat. IOP Conf Ser Earth Environ Sci. 2019;347(1). doi:10.1088/1755-1315/347/1/012015
12.    Tehseen F, Ghori SS, Dawood M, Tazeen S, Sara K, Samad A. Phytochemical screening and invitro anthelmintic activity of a novel polyherbal formulation. Res J Pharm Technol. 2021;14(5):2742-2744. doi:10.52711/0974-360X.2021.00483
13.    Khade VM, Hegaje SS, Redkar MR, Dhande CG. Formulating, pharmacognostic and physicochemical insights of polyherbal vermifuge formulation. Asian J Pharm Technol. 2021;11(1):36-40. doi:10.5958/2231-5713.2021.00006.4
14.    Seil JT, Webster TJ. Antimicrobial applications of nanotechnology: Methods and literature. Int J Nanomedicine. 2012;7:2767-2781. doi:10.2147/IJN.S24805
15.    Jamal A, Maqsood A. Review of synthesis of silver nanoparticles from different medicinal plants and their pharmacological activities. Asian J Pharm Technol. 2021;11(1):88-93. doi:10.5958/2231-5713.2021.00015.5
16.    Shinde SU, Gidde ND, Shinde PP, Kadam AB. An Overview of Nanoparticles: Current Scenario. Res J Pharm Dos Forms Technol. 2021;13(3):239-246. doi:10.52711/0975-4377.2021.00040
17.    Kadian R. Nanoparticles: A promising drug delivery approach. Asian J Pharm Clin Res. 2018;11(1):30-35. doi:10.22159/ajpcr.2018.v11i1.22035
18.    Suhesti TS, Fudholi A, Martien R, Martono S. Pharmaceutical nanoparticle technologies: An approach to improve drug solubility and dissolution rate of Piroxicam. Res J Pharm Technol. 2017;10(4):968. doi:10.5958/0974-360x.2017.00176.7
19.    Renugadevi K, Kumar N, Nachiyar CV. Phytosynthesis of silver nanoparticle using ginger extract as a reducing agent by microwave irradiation method and invitro evaluation of its antibacterial activity and cytotoxicity. Res J Pharm Technol. 2017;10(12):4142-4146. doi:10.5958/0974-360X.2017.00754.5
20.    Sonali P. Mahaparale RSK. Silver Nanoparticles Synthesis, Characterization, Application, Future Outlook. Asian J Pharm Res. 2019;9(3):181-189.
21.    Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 2020;10(20):8996-9031. doi:10.7150/thno.45413
22.    Hari S. RJPT - Biosynthesis of Nanoparticles from Microorganisms. Res J Pharm Technol. 2020;13(4):2022-2026.
23.    Kushwah P, Mandloi R, Pillai S, Birla N, Sen A. A review on role of nanoparticles in anticancer drugs. Res J Pharmacogn Phytochem. 2020;12(3):168. doi:10.5958/0975-4385.2020.00028.x
24.    Adline Princy. S, Karthik. S, Malini. R. Biosynthesis of Silver Nanoparticles by Aspergillus niger. 2011;4(1):31-34.
25.    Pantidos N. Biological Synthesis of Metallic Nanoparticles by Bacteria, Fungi and Plants. J Nanomed Nanotechnol. 2014;05(05). doi:10.4172/2157-7439.1000233
26.    Josepth D, Baskaran S, Nagarajan M, Sivasubramnian S. Synthesis and Characterization of Silver Nanoparticle From Couroupita Guianensis Leaf Extract and Its Effect on Clinical Pathogens. Asian J Pharm Clin Res. 2020;13(10):117-121. doi:10.22159/ajpcr.2020.v13i10.38859
27.    Saraniya Devi J, Valentin Bhimba B. Antimicrobial potential of silver nanoparticles synthesized using Ulva reticulata. Asian J Pharm Clin Res. 2014;7(SUPPL. 2):82-85.
28.    Krithiga N, Rajalakshmi A, Jayachitra A. Green Synthesis of Silver Nanoparticles Using Leaf Extracts of Clitoria ternatea and Solanum nigrum and Study of Its Antibacterial Effect against Common Nosocomial Pathogens . J Nanosci. 2015;2015:1-8. doi:10.1155/2015/928204
29.    Elgamouz A, Idriss H, Nassab C, et al. Green synthesis, characterization, antimicrobial, anti-cancer, and optimization of colorimetric sensing of hydrogen peroxide of algae extract capped silver nanoparticles. Nanomaterials. 2020;10(9):1-19. doi:10.3390/nano10091861
30.    Sivakumar T, Rathimeena T, Ponmanickam P. Production of silver nanoparticles synthesis of Couroupita guianensis plant extract against human pathogen and evaluations of antioxidant properties. Int J Life Sci. 2015;3(4):333-340.
31.    Thomas PD. Actinomycetes synthesized nanoparticles and their antibacterial activity. Res J Sci Technol. 2017;9(2):219-223. doi:10.5958/2349-2988.2017.00038.9
32.    Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv Colloid Interface Sci. 2009;145(1-2):83-96. doi:10.1016/j.cis.2008.09.002
33.    Santhosh SB, Yuvarajan R, Natarajan D. Annona muricata leaf extract-mediated silver nanoparticles synthesis and its larvicidal potential against dengue, malaria and filariasis vector. Parasitol Res. 2015;114(8):3087-3096. doi:10.1007/s00436-015-4511-2
34.    Namratha N, Monica P. Synthesis of silver Nanoparticles using Azadirachta indica (Neem) extract and usage in water purification. Asian J Pharm Technol. 2013;3(4):170-174.
35.    Sathiyapriya R, Hariharan V, Prabakaran K, et al. Nanotechnology in Materials and Medical Sciences. Int J Adv Sci Eng. 2019;5(3):1077-1084.
36.    Palanivelu J, Kunjumon MM, Suresh A, Nair A, Ramalingam C. Green synthesis of silver nanoparticles from Dracaena mahatma leaf extract and its antimicrobial activity. J Pharm Sci Res. 2015;7(9):690-695.
37.    Gupta S kumar, Sharma A. Medicinal properties of ginger (Zingiber officinale Roscoe) - a review. J Pharm Biol Sci. 2014;9(5):124-129.
38.    Pranati T, Anitha R, Rajeshkumar S, Lakshmi T. Preparation of silver nanoparticles using nutmeg oleoresin and its antimicrobial activity against oral pathogens. Res J Pharm Technol. 2019;12(6):2799-2803. doi:10.5958/0974-360X.2019.00471.2
39.    Velu M, Lee JH, Chang WS, et al. Fabrication, optimization, and characterization of noble silver nanoparticles from sugarcane leaf (Saccharum officinarum) extract for antifungal application. 3 Biotech. 2017;7(2):1-9. doi:10.1007/s13205-017-0749-y
40.    H. H, F. M, S. B, et al. The anthelmintic properties of tannin-rich legume forages: from knowledge to exploitation in farm conditions. Options Méditerranéennes Séries A Mediterr Semin. 2011;99(October):295-304.
41.    Acevedo-Ramírez PMDC, Hallal-Calleros C, Flores-Pérez I, Alba-Hurtado F, Mendoza-Garfias MB, Barajas R. Nematicidal effect and histological modifications induced by hydrolysable tannin extract on the third-stage infective larvae of haemonchus contortus. Biology (Basel). 2020;9(12):1-12. doi:10.3390/biology9120442
42.    Williams AR, Fryganas C, Ramsay A, Mueller-Harvey I, Thamsborg SM. Direct anthelmintic effects of condensed tannins from diverse plant sources against Ascaris suum. PLoS One. 2014;9(5). doi:10.1371/journal.pone.0097053
43.    Pacubat R. In vitro anthelmintic activity biosynthesized silver nanoparticle. J Seybold Rep. 2020;25(October):2866-2879.
44.    Rashid MMO, Ferdous J, Banik S, Islam MR, Uddin AHMM, Robel FN. Anthelmintic activity of silver-extract nanoparticles synthesized from the combination of silver nanoparticles and M. charantia fruit extract. BMC Complement Altern Med. 2016;16(1):1-6. doi:10.1186/s12906-016-1219-5
45.    Ali R, Rooman M, Mussarat S, Norin S, Ali S. A Systematic Review on Comparative Analysis, Toxicology, and Pharmacology of Medicinal Plants Against Haemonchus contortus. Front Pharmacol. 2021;12(May):1-30. doi:10.3389/fphar.2021.644027
46.    Sen S, Borah B, Chakraborty R, Dey B, Sahariah B, Sarkar B. In vitro anthelmintic and antioxidant potential of fruits of Momordica charantia: A comparative study. Indian J Heal Sci. 2014;7(2):113. doi:10.4103/2349-5006.148813
47.    Tomar RS, Preet S. Evaluation of anthelmintic activity of biologically synthesized silver nanoparticles against the gastrointestinal nematode, Haemonchus contortus. J Helminthol. 2017;91(4):454-461. doi:10.1017/S0022149X16000444

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available