Author(s): Dhelal Fouad Mohammed, Mohamed A Elsawy, Jabar A. Faraj, Shaimaa M.Mohammed

Email(s): ,

DOI: 10.52711/0974-360X.2023.00295   

Address: Dhelal Fouad Mohammed1, Mohamed A Elsawy2, Jabar A. Faraj1, Shaimaa M.Mohammed1
1Pharmacy Department, Al-Mustaqbal University College, Babylon, Iraq.
2Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, UK.
*Corresponding Author

Published In:   Volume - 16,      Issue - 4,     Year - 2023

The hydrogel of the ß-sheet self-assembled peptides is one of the powerful vehicles for the drug delivery and other biomedical applications. This class of hydrogel contains both hydrophilic and hydrophobic moieties. Therefore, it plays an integral part in the delivering of the hydrophobic drugs, which considers as a main challenge to overcome when dealing with hydrogels, this is because hydrogels are hydrophilic in nature. Herein, Doxorubicin has been used as a model anticancer agent because it is the most widely known as an anthracycline antibiotic with high anticancer activity. The major challenge with this chemotherapeutic agent its poor aqueous solubility, thus attempts have been made to transform it into hydrogel via hydrophobic interactions. The release of doxorubicin from the hydrogels at the tumour cells, is the vital aim here. Controlling the Dox release has been achievable through monitoring several parameters, such as the gel concentrations, PH, time, and the number of lysine residues. The mechanical properties, secondary structure and the morphology of the peptide hydrogels and Dox hydrogels were also assessed, via using the Rheometer, FTIR and SEM.

Cite this article:
Dhelal Fouad Mohammed, Mohamed A Elsawy, Jabar A. Faraj, Shaimaa M.Mohammed. Controlled Drug Release from Hydrogel Formulations for The Localised Delivery of Anticancer Agents to Solid Tumors. Research Journal of Pharmacy and Technology 2023; 16(4):1797-5. doi: 10.52711/0974-360X.2023.00295

Dhelal Fouad Mohammed, Mohamed A Elsawy, Jabar A. Faraj, Shaimaa M.Mohammed. Controlled Drug Release from Hydrogel Formulations for The Localised Delivery of Anticancer Agents to Solid Tumors. Research Journal of Pharmacy and Technology 2023; 16(4):1797-5. doi: 10.52711/0974-360X.2023.00295   Available on:

1.    Singh, S., Dhyani, A. and Juyal, D. Hydrogel: Preparation, Characterization and Applications. The Pharma Innovation. 2017;6:pp.25-32.
2.    Rani E., Ramadevi M., Usha A. An Overview on Hydrophilic three-Dimensional Networks: Hydrogels. Asian J. Pharm. Res. 2021; 11(1):23-28.
3.    Bhushan P., Shashikant D., Mayur S. Citric Acid cross linked cellulose based Hydrogel for Drug Delivery. Asian J. Pharm. Res. 2017; 7(4): 247-255. / 10.5958/2231-5691.2017.00039.9
4.    Buwalda SJ, Boere KW, Dijkstra PJ, et al. Hydrogels in a historical perspective: from simple networks to smart materials. Journal of Controlled Release : Official Journal of the Controlled Release Society. 2014 Sep;190:254-273. DOI: 10.1016/j.jconrel.2014.03.052. PMID: 24746623.
5.    Zarzhitsky S, Rapaport H. The interactions between doxorubicin and amphiphilic and acidic β-sheet peptides towards drug delivery hydrogels. J Colloid Interface Sci. 2011 Aug 15;360(2):525-31. doi: 10.1016/j.jcis.2011.04.091. Epub 2011 Apr 29. PMID: 21575957.
6.    Chen,J.and Zou,X. Self-assemble peptide biomaterials and their biomedical applications.Bioactive Materials;Bioactive Materials. 2019;4: 120-131.
7.    Devi N., Das M . Comparison Study of Blood Compatibility of an AMPS based Hydrogel with its Gold Nanoparticle Composite Hydrogel. Asian J. Research Chem. 2017; 10(6) 10.5958/0974-4150.2017.00127.4.
8.    Roy A. Wahane A., Karankal S., Sharma P., Khutel D., Singh O., et al . Pharmaceutical Aspects on the Formulations of Hydrogel: An Update. Res. J. Pharma. Dosage Forms and Tech. 2018; 10(2): 79-84. doi: 10.5958/0975-4377.2018.00012.5.
9.    Kopecek J. Hydrogel biomaterials: a smart future? Biomaterials. 2007 Dec;28(34):5185-92. doi: 10.1016/j.biomaterials.2007.07.044. Epub 2007 Aug 13. PMID: 17697712; PMCID: PMC2212614.
10.    Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. J Adv Res. 2015 Mar;6(2):105-21. doi: 10.1016/j.jare.2013.07.006. Epub 2013 Jul 18. PMID: 25750745; PMCID: PMC4348459.
11.    Sneha V. Sawant, Shirish V. Sankpal, Kisan R. Jadhav, Vilasrao J. Kadam. Hydrogel as drug delivery system. Research J. Pharm. and Tech. 5(5): May2012; Page 561-569.
12.    Mastria EM, Cai LY, Kan MJ, Li X, Schaal JL, Fiering S, Gunn MD, Dewhirst MW, Nair SK, Chilkoti A. Nanoparticle formulation improves doxorubicin efficacy by enhancing host antitumor immunity. J Control Release. 2018 Jan 10;269:364-373. doi: 10.1016/j.jconrel.2017.11.021. Epub 2017 Nov 13. PMID: 29146246; PMCID: PMC6475912.
13.    Hajare AA, Powar TA. , Bhatia NM., More HN. Development and Validation of RP-HPLC Method for Determination of Doxorubicin Hydrochloride from Vacuum Foam Dried Formulation. Research J. Pharm. and Tech. 2016; 9(9):1352-1356.
14.    Ahmed, A. Z., Shetty, P., Satyam, S. M., D’souza, M. R., Herle, A. M., and Singh, V. K. Methyl gallate mitigates doxorubicin-induced peripheral cytopenias: A preclinical experimental study. Research Journal of Pharmacy and Technology. 2021;14(9), 4529-4534.
15.    Saito, H., Hoffman, A.S. and Ogawa, H.I. Delivery of Doxorubicin from Biodegradable PEG Hydrogels Having Schiff Base Linkagest. Journal of Bioactive and Compatible Polymers. 2007; 22(6):589-601.
16.    Seib, F.P., Pritchard, E.M. and Kaplan, D.L. Self-Assembling Doxorubicin Silk Hydrogels for the Focal Treatment of Primary Breast Cancer. Advanced Functional Materials. 2013;23(1):58-65.
17.    Dadsetan, M.,Liu,Z.,Pumberger, M.,Giraldo, C.V.,Ruesink, T.,Lu, L.andYaszemski, M.J. A stimuli-responsive hydrogel for doxorubicin delivery. Biomaterials. 2010; 31(31): 8051-8062.
18.    Chen, Z., Zhang, P., Cheetham, A.G.,Moon, J.H., Moxley, J.W., Lin, Y. and Cui, H. Controlled release of free doxorubicin from peptide-drug conjugates by drug loading. Journal of Controlled Release. 2014;191:123-130.
19.    Ratnaparkhi M.P., Andhale R.S., Karnawat G.R. Nanofibers – A Newer Technology. Research Journal of Pharmacy and Technology. 2021; 14(4):2321-7.
20.    Matson, J.B., Newcomb, C.J., Bitton, R. and Stupp, S.I. Nanostructure-templated control of drug release from peptide amphiphile nanofiber gels. Soft Matter. 2012; 8 (13): 3586-3595.
21.    Mangione, M.R.,Giacomazza, D., Cavallaro, G., Bulone, D., Martorana, V.and San Biagio, P.L. Relation between structural and release properties in a polysaccharide gel system. Biophysical Chemistry. 2007;129(1):18-22.
22.    Nandi N, Gayen K, Ghosh S, Bhunia D, Kirkham S, Sen SK, Ghosh S, Hamley IW, Banerjee A. Amphiphilic Peptide-Based Supramolecular, Noncytotoxic, Stimuli-Responsive Hydrogels with Antibacterial Activity. Biomacromolecules. 2017 Nov 13;18(11):3621-3629. doi: 10.1021/acs.biomac.7b01006. Epub 2017 Oct 30. PMID: 28953367.
23.    Ligorio, C., Zhou, M., Wychowaniec, J.K., Zhu,X.,Bartlam, C., Miller, A.F., Vijayaraghavan, A., Hoyland, J.A. andSaiani, A. Graphene oxide containing self-assembling peptide hybrid hydrogels as a potential 3D injectable cell delivery platform for intervertebral disc repair applications. Acta Biomaterialia. 2019;92:92-103.
24.    Enev, V., Sedlacek, P., Jarabkova, S.,Velcer, T. and Pekar, M. ATR-FTIR spectroscopy and thermogravimetry characterization of water in polyelectrolyte-surfactant hydrogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019; 575.
25.    Rana R., Kumar A., Bhatia R. Impact of Infra Red Spectroscopy in Quantitative Estimation: An Update. Asian J. Pharm. Ana. 2020; 10(4):218-230. doi: 10.5958/2231-5675.2020.00040.X
26.    Yeh, M., Zhao, J., Hsieh, Y., Lin, J., Chen, F., Chakravarthy, R.D., Chung, P., Lin, H. and Hung, S. Reverse thermo-responsive hydrogels prepared from Pluronic F127 and gelatin composite materials. RSC Advances. 2017;7(34): 21252-21257.
27.    Pont, G., Chen, L., Spiller, D.J.The effect of polymer additives on the rheological properties of dipeptide hydrogelators. Soft Matter. 2012; 8:7797-7802.
28.    C A Schoener, B Carillo-Conde, H N Hutson, N A Peppas. An inulin and doxorubicin conjugate for improving cancer therapy. J Drug Deliv Sci Technol. 2013;23(2):111-118.
29.    Kharlampieva, E., Kozlovskaya, V., Zavgorodnya, O., Lilly, G.D., Kotov, N.A. and Tsukruk, V.V. pH-responsive photoluminescent LbL hydrogels with confined quantum dots. Soft Matter. 2010; 6(4): 800-807.
30.    Thurmer, M.B., Diehl, C.E., Brum, F. and Santos, L.A.D. Preparation and characterization of hydrogels with potential for use as biomaterials.Materials Research. 2014;17:109-113.
31.    Jiang, B., Larson, J.C., Drapala, P.W., Perez-Luna, V.H., Kang-Mieler, J.J. andBrey, E.M. Investigation of Lysine acrylate containing poly(N-isopropylacrylamide) hydrogels as wound dressings in normal and infected wounds. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2012; 100(3): 668-676.
32.    Zhang, Y., Yang, C., Wang, W., Liu,J., Liu, Q., Huang, F., Chu, L., Gao, H., Li, C., Kong, D., Liu,Q.and Liu, J. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Scientific Reports. 2016; 6(1).
33.    Zhang,Y.N., Avery, R.K., Vallmajo-Martin, Q., Assmann, A., Vegh, A., Memic, A., Olsen, B.D., Dr.Annabi, N., Khademhosseini, A., A Highly Elastic and Rapidly Cross-linkable Elastin-Like Polypeptide-Based Hydrogel for Biomedical Applications. Advanced Functional Materials. 2015;25: 4814-4826.
34.    Mishra A., Sahu G., Kumar A. , Patel D., Rathore G., Sahu D., Diwan M., Kanwar D. Underlining the pharmaceutical aspects associated with the development of pH responsive hydrogel. Research J. Pharm. and Tech. 2017; 10(4): 1261-1268.
35.    Watkins, K.A. and Chen, R. pH-responsive, Lysine-based hydrogels for the oral delivery of a wide size range of molecules. Int J Pharm. 2015; 478(2): 496-503.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available