Author(s):
Atheraa Abdul Khadim Wasaf, Eman Abdul Wahab Alkuwaity, Noor Dia Jaffer
Email(s):
Adraaa.alfatlawy@uokufa.edu.iq
DOI:
10.52711/0974-360X.2023.00290
Address:
Atheraa Abdul Khadim Wasaf1, Eman Abdul Wahab Alkuwaity2, Noor Dia Jaffer3
1,3Department of Chemistry, Faculty of Education for Girls, University of Kufa, Iraq.
2Department of Chemistry and Biochemistry, Faculty of Medicine, Jabir Ibn Haiyan Medical University, Najaf, Iraq.
*Corresponding Author
Published In:
Volume - 16,
Issue - 4,
Year - 2023
ABSTRACT:
Two series of compounds resulting from the reaction of alkoxy benzaldehyde with alkoxy amoxicillin were prepared. first series, five compounds were prepared by fixing alkoxy benzaldehyde with carbon atoms (6) with(butaoxy, pentaoxy, hexaoxy, heptaoxy, octakoxy) Amoxicillin, while second series, four compounds were also prepared by fixing alkoxy Amoxicillin with carbon atoms (6) with(butaoxy, pentaoxy, heptaoxy, octakoxy) benzaldehyde, and the necessary measurements were taken to verify the resulting compounds, such as (FTIR), (HNMR), and measurements Regarding the determination of liquid crystalline compounds by polarized light microscopy (POM), it was found that the presence of (nematic and smectic) phases in the case of cooling is in addition to the isotropic phase.
Cite this article:
Atheraa Abdul Khadim Wasaf, Eman Abdul Wahab Alkuwaity, Noor Dia Jaffer. Liquid Crystalline Phases for Identification of new Ether organic compounds from Amoxicillin. Research Journal of Pharmacy and Technology 2023; 16(4):1761-6. doi: 10.52711/0974-360X.2023.00290
Cite(Electronic):
Atheraa Abdul Khadim Wasaf, Eman Abdul Wahab Alkuwaity, Noor Dia Jaffer. Liquid Crystalline Phases for Identification of new Ether organic compounds from Amoxicillin. Research Journal of Pharmacy and Technology 2023; 16(4):1761-6. doi: 10.52711/0974-360X.2023.00290 Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-4-38
REFERENCES:
1. Hall JE. Hall ME. Guyton and Hall Textbook of Medical Physiology e-Book. Elsevier Health Sciences. 2020.
2. Lehmann O. Liquid crystal. Scientific American 1909. 101(5), pp.74-74.
3. Yang D. Wu S. Fundamentals of Liquid Crystal Devices. Wiley (England) 2006, Ch.12.
4. Castellano JA. Liquid Gold: The Story of Liquid Crystal Displays and the Creation of an Industry. World Scientific Publishing. 2005. ISBN 978-981-238-956-5.
5. San SE. Köysal O. Ecevit FN. Molecular reorientation-based grating diffraction in dye-doped nematic liquid crystals with red pumping source. Optics Communications. 2002; 212(4-6), pp.405-409.
6. Kadkin ON. Galyametdinov YG. Synthesis and Liquid Crystalline Properties of Some [3] Ferrocenophane-containing Schiff’s Bases and β-Enaminoketone. Electronic-Liquid Crystal Communications. 2007.
7. Collyer AA. Liquid Crystal Polymers: From Structures to Applications. Springer Science & Business Media. 2012. p. 21. ISBN 978-94-011-1870-5.
8. Priestly E. Introduction to liquid crystals. Springer Science & Business Media. 2012.
9. Rego JA, Harvey JA, MacKinnon AL, Gatdula E. Asymmetric synthesis of a highly soluble 'trimeric' analogue of the chiral nematic liquid crystal twist agent Merck S1011. Liquid Crystals. 2009; 37 (1): 37–43. doi:10.1080/02678290903359291.
10. Ronning F, Helm T, Shirer KR, Bachmann MD, Balicas L, Chan MK, Ramshaw BJ, McDonald RD, Balakirev FF, Jaime M, Bauer ED, Moll PJ. Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5. Nature. 2017; 548 (7667): 313–317. doi:10.1038/nature23315.
11. Gabriel JC, Camerel F, Lemaire BJ, Desvaux H, Davidson P, Batail P. Swollen liquid-crystalline lamellar phase based on extended solid-like sheets. Nature. 2001; 413 (6855): 504–8.. doi:10.1038/35097046.
12. Davidson P, Penisson C, Constantin D, Gabriel JP. Isotropic, nematic, and lamellar phases in colloidal suspensions of nanosheets. Proceedings of the National Academy of Sciences of the United States of America. 2018. 115 (26): 6662–6667. doi:10.1073/pnas.1802692115.
13. Oswald P. Pieranski P. Nematic and cholesteric liquid crystals: concepts and physical properties illustrated by experiments. CRC press 2005.
14. Yamamoto J, Nishiyama I, Inoue M, Yokoyama H. Optical isotropy and iridescence in a smectic blue phase. Nature. 2005; 437 (7058): 525–8. doi:10.1038/nature04034.
15. Liang Q. Liu P. Liu C. Jian X. Hong D. Li Y. Synthesis and Properties of Lyotropic Liquid Crystalline Copolyamides Containing Phthalazinone Moieties and Ether Linkages. Polymer. 2005; 46 (16): 6258–6265. doi:10.1016/j.polymer.2005.05.059.
16. Martin JD. Keary CL. Thornton TA. Novotnak MP. Knutson JW. Folmer JC. Metallotropic liquid crystals formed by surfactant templating of molten metal halides. Nature Materials. 2006; 5 (4): 271–275. doi:10.1038/nmat1610.
17. Alkuwaity EAW. Wasaf AAK. Synthesis and study the behavior of liquid crystalline phases of new heterocyclic compound from folic acid. In Journal of Physics: Conference Series. 2018;1032 (1), 012059.
18. Haddad HH. A new schiff base derivatives designed to bind metal ion (Cu, Co): Thermodynamics and biological activity studies. American Journal of Analytical Chemistry. 2016; 7(05), 446.
19. Rajabi F. Abdollahi M. Luque R. Solvent-free esterification of carboxylic acids using supported iron oxide nanoparticles as an efficient and recoverable catalyst. Materials. 2016; 9(7), 557.
20. Silverstein RM. Webster F.X. Kiemle DJ. Spectrometric Identification of Organiccompounds.7thed. John Wiley and sons Inc. (New York), 2005.
21. Juszyńska-Gałązka E. Gałązka M. Massalska-Arodź M. Bąk A. Chłędowska K. Tomczyk W. Phase Behavior and Dynamics of the Liquid Crystal 4'-butyl-4-(2-methylbutoxy)azoxybenzene (4ABO5*)". The Journal of Physical Chemistry B. 2014; 118 (51): 14982–9. doi:10.1021/jp510584w.
22. Paineau E. Philippe AM. Antonova K. Bihannic I. Davidson P. Dozov I et al. "Liquid–crystalline properties of aqueous suspensions of natural clay nanosheets. Liquid Crystals Reviews. 2013; 1 (2): 110. doi:10.1080/21680396.2013.842130.
23. Skoog DA., Holler FJ. CrouchSR. Principles of Instrumental Analysis, 6th ed. Belmont, CA. Thomson Higher Education. 2007.
24. Watson MC, Brandt EG, Welch PM, Brown FL. Determining biomembrane bending rigidities from simulations of modest size. Physical Review Letters. 109 (2): 028102. doi:10.1103/Phys Rev Lett. 109.028102.
25. Lin YH, Wang YJ, Reshetnyak V. Liquid crystal lenses with tunable focal length. Liquid Crystals Reviews. 2017. 5 (2): 111–143. doi:10.1080/21680396.2018.1440256. S2CID 139938136.
26. https://www.techspot.com/article/2322-display-tech-compared/. Accessed 20.08.2022
27. Nikolaou P. Whiting N. Eschmann N.A. Chaffee KE. Goodson BM. Barlow M.J. Generation of laser-polarized xenon using fiber-coupled laser-diode arrays narrowed with integrated volume holographic gratings. J. Magn. Reson. 2009. 197, 249-254.
28. da Silva MC. Figueirinhas JL. Sotomayor JC. Improvement of permanent memory effect in PDLC films using TX-100 as an additive. Liquid Crystals. 2016. 43 (1): 124–30.doi:10.1080/02678292.2015.1061713. S2CID 101996816.