Author(s): Avinash A. K. Math, Meenakshi Kaushik, Elavarasan Krishnamoorthy


DOI: 10.52711/0974-360X.2023.00283   

Address: Avinash A. K. Math1, Meenakshi Kaushik2, Elavarasan Krishnamoorthy3
1USM-KLE International Medical Programme, Nehru Nagar, Belagavi - 590010, Karnataka, India.
2ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, Karnataka, India.
3Central Institute of Fisheries Technology, CIFT Junction, CIFT Road Matsyapuri, Willingdon Island, Kochi, Kerala 682029, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 4,     Year - 2023

The development of resistance to multiple antibiotics by Plasmodium falciparum calls for the exploration of antibiotics from newer sources. Bioactive protein fragment obtained by controlled hydrolysis of the marine sources is being explored as potential antimalarial molecules. In vitro inhibitory activity of fish protein hydrolysates were determined against Plasmodium falciparum 3D7 cultures. Fish protein hydrolysates prepared from fish species [Pangasius (Pangasianodon hypophthalmus), Clam and White snapper (Macolor niger)] were used as a source to prepare six types of hydrolysates and were screened for the antiplasmodial activity using SYBR Green fluorescence Inhibition Assay. To determine the cytotoxic potential of hydrolysate samples MMT assay was performed on MCF-7 breast cancer cell lines. In the present investigation of six proteins hydrolysates samples, clam meat hydrolysate (Cm), fresh pangasius meat hydrolysate (Pm) and cook-wash processed pangasius meat hydrolysate (Pc) had more than 50% inhibition with EC50 values of 2.30, 4.87 and 5.98µg/ml respectively indicating high lethality at a lower concentration for Cm proteins. Except Pc sample, all hydrolysate had anti-proliferative effect across the concentration against MCF-7. Fish hydrolysates explored are highly active against Plasmodium in the preliminary investigation; present a candidature protein as promising source of antimalarial agents.

Cite this article:
Avinash A. K. Math, Meenakshi Kaushik, Elavarasan Krishnamoorthy. Preliminary Screening for Cytotoxicity and Antiplasmodial activity of Fish Protein Hydrolysates on Erythrocytes infected with Plasmodium falciparum 3D7. Research Journal of Pharmacy and Technology 2023; 16(4):1721-6. doi: 10.52711/0974-360X.2023.00283

Avinash A. K. Math, Meenakshi Kaushik, Elavarasan Krishnamoorthy. Preliminary Screening for Cytotoxicity and Antiplasmodial activity of Fish Protein Hydrolysates on Erythrocytes infected with Plasmodium falciparum 3D7. Research Journal of Pharmacy and Technology 2023; 16(4):1721-6. doi: 10.52711/0974-360X.2023.00283   Available on:

1.    Programme WHOGM. World Malaria Report 2017. 2017. doi:10.1071/EC12504
2.    Zambare KK, Thalkari AB, Tour NS. A Review on Pathophysiology of Malaria: A Overview of Etiology, Life Cycle of Malarial Parasite, Clinical Signs, Diagnosis and Complications. Asian Journal of Research in Pharmaceutical Science. 2019;9(3):226. doi:10.5958/2231-5659.2019.00035.3
3.    Wellems TE, Plowe C V. Chloroquine-resistant malaria. The Journal of infectious diseases. 2001;184(6):770–776. doi:10.1086/322858
4.    Thillainayagam M, Ramaiah S. Mosquito, malaria and medicines – A review. Research Journal of Pharmacy and Technology. 2016;9(8):1268–1276. doi:10.5958/0974-360X.2016.00241.9
5.    Francis P, Suseem S. Antimalarial Potential of Isolated Flavonoids-A Review. Research Journal of Pharmacy and Technology. 2017;10(11):4057. doi:10.5958/0974-360x.2017.00736.3
6.    Wardani AK, Wahid AR, Rosa NS. In vitro antimalarial activity of ashitaba root extracts (Angelica keiskei k.). Research Journal of Pharmacy and Technology. 2020;13(8):3771–3776. doi:10.5958/0974-360X.2020.00667.8
7.    Mutiah R, Badiah R, Hayati EK, Widyawaruyanti A.  Activity of Antimalarial Compounds from Ethyl Acetate Fraction of Sunflower Leaves ( Helianthus annuus L.) against Plasmodium falciparum Parasites 3D7 Strain . Asian Journal of Pharmacy and Technology. 2017;7(2):86. doi:10.5958/2231-5713.2017.00015.0
8.    Suruse P, Duragkar N, Shivhare U, Raut S, Warokar A. Contribution of Traditional Medicines to the Development of Modern Medicine for Malaria. Research Journal of Pharmacology and Pharmacodynamics. 2011;3(1):1-4–4.
9.    Bell A. Antimalarial Peptides: The Long and the Short of It. Current Pharmaceutical Design. 2012;17(25):2719–2731. doi:10.2174/138161211797416057
10.    Reddy M, Reddy S, Chandra A, Santhosh B, Surekha C, Naveen K. Novel Approaches for Delivery of Proteins and Peptides – A Review. Research Journal of Pharmaceutical Dosage Forms and Technology. 2013;5(1):7–11.
11.    Vale N, Aguiar L, Gomes P. Antimicrobial peptides: A new class of antimalarial drugs? Frontiers in Pharmacology. 2014;5(DEC):275. doi:10.3389/fphar.2014.00275
12.    Aguiar L, Machado M, Sanches-Vaz M, Prudêncio M, Vale N, Gomes P. Coupling the cell-penetrating peptides transportan and transportan 10 to primaquine enhances its activity against liver-stage malaria parasites. MedChemComm. 2019;10(2):221–226. doi:10.1039/c8md00447a
13.    El Chamy Maluf S, Dal Mas C, Oliveira EB, Melo PM, Carmona AK, Gazarini ML, Hayashi MAF. Inhibition of malaria parasite Plasmodium falciparum development by crotamine, a cell penetrating peptide from the snake venom. Peptides. 2016;78:11–16. doi:10.1016/j.peptides.2016.01.013
14.    Mather MW, Ke H. Novel Defense Peptides from Platelets Kill Malaria Parasites. Trends in Parasitology. 2018;34(9):729–731. doi:10.1016/
15.    Bianchin A, Bell A, Chubb AJ, Doolan N, Leneghan D, Stavropoulos I, Shields DC, Mooney C. Design and evaluation of antimalarial peptides derived from prediction of short linear motifs in proteins related to erythrocyte invasion. PLoS ONE. 2015;10(6). doi:10.1371/journal.pone.0127383
16.    Linington RG, Clark BR, Trimble EE, Almanza A, Ureña LD, Kyle DE, Gerwick WH. Antimalarial peptides from marine cyanobacteria: Isolation and structural elucidation of gallinamide A. Journal of Natural Products. 2009;72(1):14–17. doi:10.1021/np8003529
17.    Elavarasan K, Naveen Kumar V, Shamasundar BA. Antioxidant and functional properties of fish protein hydrolysates from fresh water carp (Catla catla) as influenced by the nature of enzyme. Journal of Food Processing and Preservation. 2014;38(3):1207–1214. doi:10.1111/jfpp.12081
18.    Trager W, Jensen JB. Human malaria parasites in continuous culture. Science (New York, N.Y.). 1976;193(4254):673–675. doi:10.1126/science.781840
19.    Jadhav K, Deore S, Dhamecha D, Hr R, Jagwani S, Jalalpure S, Bohara R. Phytosynthesis of Silver Nanoparticles: Characterization, Biocompatibility Studies, and Anticancer Activity. ACS Biomaterials Science and Engineering. 2018;4(3):892–899. doi:10.1021/acsbiomaterials.7b00707
20.    Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proceedings of the National Academy of Sciences of the United States of America. 1987;84(15):5449–53. doi:10.1097/00043764-198806000-00004
21.    Carter V, Underhill A, Baber I, Sylla L, Baby M, Larget-Thiery I, Zettor A, Bourgouin C, Langel Ü, Faye I, et al. Killer Bee Molecules: Antimicrobial Peptides as Effector Molecules to Target Sporogonic Stages of Plasmodium. PLoS Pathogens. 2013;9(11):1–13. doi:10.1371/journal.ppat.1003790
22.    Abu-salem FM, Mahmoud MH, Gibriel  a Y, Abou-arab A. Characterization of Antioxidant Peptides of Soybean Protein Hydrolysate. World Academy of Science, Engineering and Technology. 2013;79(7):249–253.
23.    Sánchez A, Vázquez A. Bioactive peptides: A review. Food Quality and Safety. 2017;1(1):29–46. doi:10.1093/fqsafe/fyx006
24.    Yadav AR, Mohite SK. Potential role of peptides for development of cosmeceutical skin products. Research Journal of Topical and Cosmetic Sciences. 2020;11(2):77–82. doi:10.5958/2321-5844.2020.00014.x
25.    Nair TS, Meghana R, Shlini P. Antimicrobial Activity of the protein fraction obtained in the extraction of Curcumin. Asian Journal of Research in Chemistry. 2019;12(4):199. doi:10.5958/0974-4150.2019.00037.3
26.    Elavarasan K, Shamasundar BA, Badii F, Howell N. Angiotensin I-converting enzyme (ACE) inhibitory activity and structural properties of oven- and freeze-dried protein hydrolysate from fresh water fish (Cirrhinus mrigala). Food Chemistry. 2016;206(July):210–216. doi:10.1016/j.foodchem.2016.03.047
27.    Elavarasan K, Shamasundar BA. Angiotensin-I-Converting Enzyme Inhibitory Activity and Antioxidant Properties of Cryptides Derived from Natural Actomyosin of Catla catla Using Papain. Journal of Food Quality. 2018;2018. doi:10.1155/2018/9354829
28.    Dara PK, Elavarasan K, Shamasundar BA. Improved Utilization of Croaker Skin Waste and Freshwater Carps Visceral Waste: Conversion of Waste to Health Benefitting Peptides. International Journal of Peptide Research and Therapeutics. 2020;(0123456789). doi:10.1007/s10989-020-10053-3
29.    Nwachukwu ID, Aluko RE. Anticancer and antiproliferative properties of food-derived protein hydrolysates and peptides. Journal of Food Bioactives. 2019;7:18–26. doi:10.31665/jfb.2019.7194
30.    Song R, Wei R, Zhang B, Yang Z, Wang D. Antioxidant and antiproliferative activities of heated sterilized pepsin hydrolysate derived from half-fin anchovy (Setipinna taty). Marine Drugs. 2011;9(6):1142–1156. doi:10.3390/md9061142

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available