Author(s): Elsa Fitria Apriani, Shaum Shiyan, Dwi Hardestyariki, Viva Starlista, Mariska Febriani

Email(s): elsafitria@mipa.unsri.ac.id

DOI: 10.52711/0974-360X.2023.00255   

Address: Elsa Fitria Apriani1*, Shaum Shiyan1, Dwi Hardestyariki2, Viva Starlista1, Mariska Febriani1
1Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Sriwijaya University, South Sumatra, Indonesia.
2Department of Biology, Faculty of Mathematics and Natural Sciences, Sriwijaya University, South Sumatra, Indonesia.
*Corresponding Author

Published In:   Volume - 16,      Issue - 4,     Year - 2023


ABSTRACT:
Clindamycin HCl is a drug for the treatment of acne. Clindamycin can act as an anti-acne by interfering with bacterial protein synthesis. The concentration of clindamycin used in the treatment of acne is 1%. Still, the bioavailability of the drug in the serum only reaches 0.7 – 12.4% of the total active substance in the preparation, so it is necessary to develop preparations that can increase the bioavailability of the drug Clindamycin HCl, one of which is in the form of ethosomes. This study aimed to optimize the clindamycin HCl loaded ethosomes formula with variations in the concentration of Phospholipon 90G and ethanol using the 22 factorial design method to obtain four formulas. The concentrations of phospholipon 90G used were 2% and 4%, while ethanol was 20% and 40%, respectively. Ethosomes were prepared using the thin layer hydration method and characterized by percent entrapment efficiency (%EE), particle size, and polydispersity index to determine the optimum formula. Based on the factorial design analysis results, the concentration of Phosholipon 90G, ethanol, and their two interactions significantly affected the value of entrapment efficiency, particle size, and polydispersity index with p<0.05. The optimum formula was obtained using 2% phospolipon 90G and 40% ethanol with an entrapment efficiency of 98.31±0.06, a particle size of 179.6±8.6nm, and a polydispersity index of 0.361±0.015. The optimum formula also showed good solubility in distilled water and acid solvents and good physical stability.


Cite this article:
Elsa Fitria Apriani, Shaum Shiyan, Dwi Hardestyariki, Viva Starlista, Mariska Febriani. Factorial Design for the Optimization of Clindamycin HCl-Loaded Ethosome with various concentrations of Phospholipon 90g and Ethanol. Research Journal of Pharmacy and Technology 2023; 16(4):1561-8. doi: 10.52711/0974-360X.2023.00255

Cite(Electronic):
Elsa Fitria Apriani, Shaum Shiyan, Dwi Hardestyariki, Viva Starlista, Mariska Febriani. Factorial Design for the Optimization of Clindamycin HCl-Loaded Ethosome with various concentrations of Phospholipon 90g and Ethanol. Research Journal of Pharmacy and Technology 2023; 16(4):1561-8. doi: 10.52711/0974-360X.2023.00255   Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-4-3


REFERENCES:
1.    Murphy PB, Bistas KG, Le JK. Clindamycin. In: StatPearls. Treasure Island (FL): StatPearls. Updated 2021 Jul 1. (Available from: https://www.ncbi.nlm.nih.gov/books/NBK519574/)
2.    Dogan B, Bektöre B, Karabacak E, Özyurt M. Resistance status of antibiotics in Gram-positive bacteria isolated from acne lesions in İstanbul. Turkderm-Turk Arch Dermatol Venereology. 2017; 51: 32-36. (https://doi.org/10.4274/turkderm.23169)
3.    McLaughlin J, Watterson S, Layton AM, Bjourson AJ, Barnard E, McDowell A. Propionibacterium acnes and Acne Vulgaris: New Insights from the Integration of Population Genetic, Multi-Omic, Biochemical and Host-Microbe Studies. Microorganisms. 2019; 7 (128): 1-29. (https://doi.org/10.3390/microorganisms7050128)
4.    Park KH, Kim DY, Lee YM, Lee MS, Kang KC, Lee JH, Park SY, Moon C, Chong YP, Kim SH, Lee SO, Choi SH, Kim YS, Woo JH, Ryu BH, Bae IG, Cho OH. Selection of an appropriate empiric antibiotic regimen in hematogenous vertebral osteomyelitis. PLoS One. 2019; 14 (2): 1-12. (https://doi.org/10.1371/journal.pone.0211888)
5.    Struzycka I, Mazinska B, Bachanek T, Boltacz-Rzepkowska E, Drozdzik A, Kaczmarek U, Kochanska B, Mielczarek A, Pytko-Polonczyk J, Surdacka A, Tanasiewicz M, Waszkiel D, Hryniewicz W. Knowledge of antibiotics and antimicrobial resistance amongst final year dental students of Polish medical schools-A cross-sectional study. Eur J Dent Educ. 2019; 23 (3): 295-303. (https://doi.org/ 10.1111/eje.12430)
6.    Shivhare SC, Shivhare UD, Srivastav P, Malviya KG. Formulation of Clindamycine hydrochloride vaginal suppository containing Lacto bacillus spores. Asian J. Res. Pharm. Sci. 2013; 3 (1): 5-7.
7.    Franz TJ. On the bioavailability of topical formulations of clindamycin hydrochloride. J Am Acad Dermatol. 1983; 9 (1): 66-73. (https://doi.org/10.1016/s0190-9622(83)70108-8).
8.    Bilal H, Khan MN, Rehman T, Hameed MF, Yang X. Antibiotic resistance in Pakistan: a systematic review of past decade. BMC Infect Dis. 2021; 21 (244): 1-19. (https://doi.org/10.1186/s12879-021-05906-1)
9.    Saffar H, Rajabiani A, Abdollahi A, Habibi S, Baseri Z. Frequency of inducible clindamycin resistance among gram-positive cocci in a tertiary hospital, Tehran, Iran. Iran J Microbiol. 2016; 8 (4): 243-248.
10.    Kavitha E, Srikumar R, Muthu G. Inducible Clindamycin Resistance among Clinical Isolates from a Tertiary Care Hospital. Research J. Pharm. and Tech. 2018; 11 (11): 5008-5012. (https://doi.org/10.5958/0974-360X.2018.00913.7)
11.    Abdulbaqi I, Darwis Y, Abdul Karim Khan N, Abou Assi R, Khan A. Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int J Nanomedicine. 2016; 11: 2279-2304. (https://doi.org/10.2147/IJN.S105016)
12.    Zahid SR, Upmanyu N, Dangi S, Ray SK, Jain P, Parkhe G. Ethosome: a novel vesicular carrier for transdermal drug delivery. Journal of Drug Delivery and Therapeutics. 2018; 8 (6): 318-326. (https://doi.org/10.22270/jddt.v8i6.2028)
13.    Verma P, Pathak K. Therapeutic and cosmeceutical potential of ethosomes: An overview. J Adv Pharm Technol Res. 2010; 1 (3): 274-282. (https://doi.org/10.4103/0110-5558.72415)
14.    Fathalla D, Youssef EMK, Soliman GM. Liposomal and Ethosomal Gels for the Topical Delivery of Anthralin: Preparation, Comparative Evaluation and Clinical Assessment in Psoriatic Patients. Pharmaceutics. 2020; 12 (5): 446. (https://doi.org/10.3390/pharmaceutics12050446)
15.    Apriani EF, Rosana Y, Iskandarsyah I. Formulation, characterization, and in vitro testing of azelaic acid ethosome-based cream against Propionibacterium acnes for the treatment of acne. J Adv Pharm Technol Res. 2019; 10 (2): 75-80. (https://doi.org/10.4103/japtr.JAPTR_289_18)
16.    Cristiano MC, Mancuso A, Giuliano E, Cosco D, Paolino D, Fresta M. EtoGel for IntraArticular Drug Delivery: A New Challenge for Joint Diseases Treatment. J. Funct. Biomater. 2021; 12 (34): 1-18. (https://doi.org/10.3390/ jfb12020034)
17.    Fadli A, Nizam M, Ibrahim A, Khan J, Budiasih S, Kaleemullah M, Akram J, Suliman RS, Todo H, Sugibayashi K, Yusuf E. Determination of permeation pathways of clindamycin phosphate into theskin. American Journal of Pharmtech Research. 2015; 5 (2): 258-267.
18.    Amini Y, Saeid AJ, Kayvan S, Sirwan Z, Danial MS, Tafaghodi M. Different methods to determine the encapsulation efficiency of protein in PLGA nanoparticles. Bio-Medical Materials and Engineering. 2017; 28 (6): 613-620. (https://doi.org/ 10.3233/BME-171705)
19.    Dave V, Pareek ASP. Ethosome: A Novel Approach of Transdermal Drug Delivery System. International Journal of Advanced Research in Pharmaceutical & Bio Sciences. 2012; 1 (4): 439–452.
20.    Maxwell A, Priya S. Nanosized Ethosomes – A Promising Vesicular Drug Carrier for Transdermal Drug Delivery. Research J. Pharm. and Tech. 2019; 12 (2): 876-880. (https://doi.org/10.5958/0974-360X.2019.00150.1)
21.    Apriani EF, Nurleni N, Nugrahani HN, Iskandarsyah I. Stability Testing of Azelaic Acid Cream Based Ethosome. Asian Journal of Pharmaceutical and Clinical Research. 2018; 11 (5): 270–273. (https://doi.org/10.22159/ajpcr.2018.v11i5.23218).
22.    Mukherjee S, Maity S, Ghosh B, Mondal A. Accelerated Stability study of Preformulated glyburide loaded Lyophilized lipid Nanoparticles. Research J. Pharm. and Tech. 2020; 13 (7): 3323-3325. (https://doi.org/10.5958/0974-360X.2020.00589.2)
23.    Liu J, Wang J, Leung C, Gao F. A Multi-Parameter Optimization Model for the Evaluation of Shale Gas Recovery Enhancement. Energies. 2018; 11 (654): 1-29. (https://doi.org/10.3390/en11030654)
24.    Sankar C, Muthukumar S, Arulkumaran G, Shalini S , Sundaraganapathy R, Sandra JS. Formulation and Characterization of Liposomes containing Clindamycin and Green tea for Anti Acne. Research J. Pharm. and Tech. 2019; 12(12): 5977-5984. (https:/doi.org/10.5958/0974-360X.2019.01038.2)
25.    Pei J, Fu B, Jiang L, Sun T. Biosynthesis, characterization, and anticancer effect of plant-mediated silver nanoparticles using Coptis chinensis. Int J Nanomedicine. 2019; 14: 1969-1978. (https://doi.org/10.2147/IJN.S188235)
26.    Raza S, Ansari A, Siddiqui NN, Ibrahim F, Abro MI, Aman A. Biosynthesis of Silver Nanoparticles for the Fabrication of non Cytotoxic and Antibacterial Metallic Polymer Based Nanocomposite System. Scientific Reports. 2021; 11: 1-15. (https://doi,org/10.1038/s41598-021-90016-w)
27.    Malanovic N, Lohner K. Gram-positive bacterial cell envelopes: the impact on the activity of antimicrobial peptides. Biochim. Biophys. Acta. 2016; 1858, 936–946. (https://doi.org/10.1016/j.bbamem.2015.11.004)
28.    Pilch E, Musiał W. Liposomes with an Ethanol Fraction as an Application for Drug Delivery. Int J Mol Sci. 2018; 19 (12): 3806. (https://doi.org/10.3390/ijms19123806)
29.    Dhillon P, Mirza MA, Anwer MK, Alshetaili AS, Alshahrani SM, Iqbal Z. Development and optimization of erythromycin-loaded lipid-based gel by Taguchi design: In vitro characterization and antimicrobial evaluation. Braz. J. Pharm. Sci. 2019; 55: 1-9. (http://dx.doi.org/10.1590/s2175-97902019000217395)
30.    Akib NI, Novianti C, Ritonga H, Suryani, Adjeng ANT. Optimization of Method and Proportion of Phosphatidylcholine and Ethanol for Preparation of Kojic Acid Ethosome. Research J. Pharm. and Tech. 2020; 13 (11): 5251-5256. (https://doi.org/ 10.5958/0974-360X.2020.00918.X)
31.    Wilson V, Siram K, Rajendran S, Sankar V. Development and evaluation of finasteride loaded ethosomes for targeting to the pilosebaceous unit. Artificial Cells, Nanomedicine, and Biotechnology. 2018; 46 (8): 1892-1901. (https://doi.org/10.1080/21691401.2017.1396221)
32.    Saloni B. Ethosomes: A Novel Vesicular Innovation to Enhance Transdermal Delivery of Drugs. Research Journal of Pharmaceutical Dosage Forms and Technology. 2022; 14(1): 72-78. (https://doi.org/10.52711/0975-4377.2022.00012)
33.    Saudagar RB, Samuel S. Ethosomes: Novel noninvasive carrier for Transdermal Drug Delivery. Asian J. Pharm. Tech. 2016; 6(2): 135-138. (https://doi.org/10.5958/2231-5713.2016.00019.2)
34.    Purohit MC, Kandwal A, Purohit R, Semwal AR, Parveen S, Khajuria AK. Antimicrobial Activity of Synthesized Zinc Oxide Nanoparticles using Ajuga bracteosa Leaf Extract. Asian Journal of Pharmaceutical Analysis. 2021; 11 (4): 275-0. (https://doi.org/ 10.52711/2231-5675.2021.00047)
35.    Sharma VK, Koka A, Yadav J, Sharma AK, Keservani RK.  Self-Micro Emulsifying Drug Delivery Systems: A Strategy to Improve Oral Bioavailability. Ars Pharm. 2016; 57 (3): 97-109. (https://doi.org/10.4321/S2340-98942016000300001)
36.    Alqahtani MS, Kazi M, Alsenaidy MA, Ahmad MZ. Advances in Oral Drug Delivery. Front. Pharmacol. 2021; 12: 1-21. (https://doi.org/10.3389/fphar.2021.618411)
37.    Mardiyanto M, Apriani EF, Alfarizi MH. Formulation and In-vitro Antibacterial Activity of Gel containing Ethanolic extract of Purple Sweet Potato Leaves (Ipomoea batatas (L.) Loaded Poly Lactic Co-Glycolic Acid Submicroparticles against Staphylococcus aureus. Research Journal of Pharmacy and Technology. 2022; 15 (8): 3599-5. (https:doi.org/10.52711/0974-360X.2022.00603)

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available