Author(s): Zahraa Hilal Hassani, Ali Faris Hassan


DOI: 10.52711/0974-360X.2023.00281   

Address: Zahraa Hilal Hassani1*, Ali Faris Hassan2
1Ministry of Health and Environment, Wasit Health Department, Wasit, Iraq.
2Universities of Baghdad, College of Pharmacy, Pharmacology and Toxicology Department.
*Corresponding Author

Published In:   Volume - 16,      Issue - 4,     Year - 2023

Background: Although methotrexate (MTX) is a frequently used chemotherapy drug, its effectiveness is sometimes hampered by the drug's toxic consequences. Omega 7 is a monounsaturated fatty acid, with different anti-inflammatory, anti-diabetic anti-obesity applications, and its possible protective effects against MTX-induced blood toxicity were investigated in this study. Objective: Evaluation of possible protective effects of omega7 against MTX-induced blood toxicity. Methods: 30 mice were divided into five groups, the First group take liquid paraffin orallyfor 7 days for served as negative control and the second group take methotrexate (20mg/kg) intraperitoneallyto serve as a positive control,the third group takes omega 7 (100mg/kg)orally for 7 days, forth groupreceived (50mg/kg ) omega 7orally for 7 days as well as give It methotrexate (20mg/kg) on day 8, the fifth groupreceived (100mg/kg ) omega 7orally for 7 days as well as give It methotrexate (20mg/kg) on day 8. After that, the animals were killed and took blood samples for measuring blood parameters, such as PCV, Hb, MCV, MCH, platelet, WBC count and Differential WBC. Results: the results showed the presence of a decrease in both the RBC from which MCV and MCH count showed a significant decrease at a dose of 20mg/kg concentration of methotrexate, omega7 at a dose of 50 and 100 mg/kg work to increase the variables above, Concerning the WBC was significantlydecreased in the totals and increased in monocytes count for the study when giving methotrexate while reversed when giving omega7 with this drug. Conclusion: omega7 has a significant protective role in Methotrexate-induce Blood Toxicity in Mice

Cite this article:
Zahraa Hilal Hassani, Ali Faris Hassan. Effect of Omega 7 on Some Parameters Related to WBCs and RBCs in Methotrexate-induce Blood Toxicity in Mice. Research Journal of Pharmacy and Technology 2023; 16(4):1709-3. doi: 10.52711/0974-360X.2023.00281

Zahraa Hilal Hassani, Ali Faris Hassan. Effect of Omega 7 on Some Parameters Related to WBCs and RBCs in Methotrexate-induce Blood Toxicity in Mice. Research Journal of Pharmacy and Technology 2023; 16(4):1709-3. doi: 10.52711/0974-360X.2023.00281   Available on:

1.    Klareskog L, van der Heijde D, de Jager JP, Gough A, Kalden J, Malaise M, Martín Mola E, Pavelka K, Sany J, Settas L, Wajdula J, Pedersen R, Fatenejad S, Sanda M; TEMPO (Trial of Etanercept and Methotrexate with Radiographic Patient Outcomes) study investigators. Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: double-blind randomised controlled trial. Lancet. 2004;363(9410):675-81. doi: 10.1016/S0140-6736(04)15640-7.
2.    Sharma A, Ankalgi AD, Devi A, Pandit V, Ashawat MS. Analytical Method Development and Validation for Simultaneous estimation of Methotrexate and Hydroxychloroquine sulfate in bulk drug by using RP-HPLC. Asian Journal of Pharmaceutical Analysis. 2021; 11(2):73-8. doi: 10.52711/2231-5675.2021.00014
3.    Mehaneesha K, Rishab P, Seetharam SS, Mathias L, Chand S, Varghese TP, Nandakumar UP, Anjaly Vijayan. A Retrospective Study on Drug Utilisation Pattern in Management of Rheumatoid Arthritis. Research J. Pharm. and Tech. 2020; 13(11):5263-5266. doi: 10.5958/0974-360X.2020.00920.8
4.    Cetiner M, Sener G, Sehirli AO, Ekşioğlu-Demiralp E, Ercan F, Sirvanci S, Gedik N, Akpulat S, Tecimer T, Yeğen BC. Taurine protects against methotrexate-induced toxicity and inhibits leukocyte death. Toxicol Appl Pharmacol. 2005;209(1):39-50. doi: 10.1016/j.taap.2005.03.009.
5.    Rao BC, Vidyadhara S, Ragahavendrarao KV, Prakassh KV, Srilatha BU. Formulation and Evaluation of Sustained Release Methotrexate Microcapsules. Research J. Pharm. and Tech. 2011;4(12):1861-1864.
6.    Alrubaye YSJ, Al-Juboori MBM, Al-HumairiAK. The Causes of Non-Adherence to Methotrexate in patients with Rheumatoid Arthritis. Research J. Pharm. and Tech. 2021; 14(2):769-774. doi: 10.5958/0974-360X.2021.00134.7
7.    Sonkar SK, Lanjhiyana SK. Formulation and Evaluations of Methotrexate Loaded Multiparticulate System for Colon Targeting: In vitro and Surface Morphology. Research J. Pharm. and Tech. 2019; 12(5):2067-2074. doi: 10.5958/0974-360X.2019.00342.1
8.    Premkuma B. Antioxidant Defense and Disease activity in Rheumatoid Arthritis. Research J. Pharm. and Tech 2018; 11(5):1810-1814. doi: 10.5958/0974-360X.2018.00336.0
9.    Tian H, Cronstein BN. Understanding the mechanisms of action of methotrexate: implications for the treatment of rheumatoid arthritis. Bull NYU Hosp Jt Dis. 2007;65(3):168-73.
10.    Vezmar S, Becker A, Bode U, Jaehde U. Biochemical and clinical aspects of methotrexate neurotoxicity. Chemotherapy. 2003;49(1-2):92-104. doi: 10.1159/000069773.
11.    Kotadiya RM, Patel VA, Patel HV. Factorial Design Based Formulation and Characterization of the Controlled Release Methotrexate Beads. Research J. Pharm. and Tech.2009;2(3):592-596.
12.    Mulla JA, Suresh S, Khazi IA. Formulation, Characterization and in vitro Evaluation of Methotrexate Solid Lipid Nanoparticles. Research J. Pharm. and Tech. 2009;2(4):685-689.
13.    Lekshmi S. Antony SR, Sidharthan N, Kammath G, Anila KN. Methotrexate Induced Lung Toxicity- A Case Report. Research J. Pharm. and Tech 2017; 10(10):3458-3460. doi: 10.5958/0974-360X.2017.00617.5
14.    Kapoor K, Pandit V, Nagaich U. Topical Methotrexate Cubosomes in Treatment of Rheumatoid Arthritis: Ex-Vivo and In-Vivo Studies. Research J. Pharm. and Tech. 2021; 14(2):991-996. doi: 10.5958/0974-360X.2021.00177.3
15.    Gillingham LG, Harris-Janz S, Jones PJ. Dietary monounsaturated fatty acids are protective against metabolic syndrome and cardiovascular disease risk factors. Lipids. 2011;46(3):209-28. doi: 10.1007/s11745-010-3524-y.
16.    Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008;134(6):933-44. doi: 10.1016/j.cell.2008.07.048.
17.    Hodson L, Karpe F. Is there something special about palmitoleate? Curr Opin Clin Nutr Metab Care. 2013;16(2):225-31. doi: 10.1097/MCO.0b013e32835d2edf.
18.    de Souza CO, Vannice GK, Rosa Neto JC, Calder PC. Is Palmitoleic Acid a Plausible Nonpharmacological Strategy to Prevent or Control Chronic Metabolic and Inflammatory Disorders? Mol Nutr Food Res. 2018;62(1). doi: 10.1002/mnfr.201700504.
19.    Bernstein AM, Roizen MF, Martinez L. WITHDRWAN: Purified palmitoleic acid for the reduction of high-sensitivity C-reactive protein and serum lipids: a double-blinded, randomized, placebo controlled study. J Clin Lipidol. 2014;8(6):612-617. doi: 10.1016/j.jacl.2014.08.001.
20.    Cunningham E. What are n-7 fatty acids and are there health benefits associated with them? J Acad Nutr Diet. 2015 Feb;115(2):324. doi: 10.1016/j.jand.2014.11.021.
21.    Hu W, Fitzgerald M, Topp B, Alam M, O’Hare TJ. A review of biological functions, health benefits, and possible de novo biosynthetic pathway of palmitoleic acid in macadamia nuts. J Funct Foods. 2019;62:103520.DOI: 10.1016/j.jff.2019.103520
22.    Carrillo W, Carpio C, Morales D, Vilcacundo E, Alvarez M. Fatty acids composition in macadamia seed oil (Macadamia integrifolia) from Ecuador. Asian J Pharm Clin Res. 2017;10:303–6. doi:10.22159/ajpcr.2017.v10i2.15618
23.    O’Hare TJ, Trieu HH, Topp B, Russell D, Pun S, Torrisi C. Assessing fatty acid profiles of macadamia nuts. HortScience. 2019;54(4):633–7. doi:10.21273/HORTSCI13418-18
24.    Rengel A, Perez E, Piombo G, Ricci J, Servent A, Tapia MS, Gibert O, Montet D. Lipid profile and antioxidant activity of macadamia nuts (Macadamia integrifolia) cultivated in Venezuela. Natural Science, 2015;7 (12)535-547 doi:10.4236/ns.2015.712054
25.    Hashem EZ, Khodadadi M, Asadi F, Koohi MK, Eslami M, Hasani-Dizaj S, et al. The Antioxidant Activity of Palmitoleic Acid on the Oxidative Stress Parameters of Palmitic Acid in Adult Rat Cardiomyocytes. Ann Mil Heal Sci Res. 2016;14(3). DOI:10.5812/amh.11467
26.    Allen JW, Shuler CF, Mendes RW, Latt SA. A simplified technique for in vivo analysis of sister-chromatid exchanges using 5-bromodeoxyuridine tablets. Cytogenet Cell Genet. 1977;18(4):231-7. doi: 10.1159/000130765.
27.    Robbins TJ, Bowen D, Bui QQ, Tran MT. Modulation of high-dose methotrexate toxicity by a non-toxic level of 5-fluorouracil. Toxicology. 1986;41(1):61-73. doi: 10.1016/0300-483x(86)90104-6.
28.    Kremer JM. Toward a better understanding of methotrexate. Arthritis Rheum. 2004;50(5):1370-82. doi: 10.1002/art.20278.
29.    Abd MR, Hassan AF. The Ameliorative Effect of Fimasartan against Methotrexate-Induced Nephrotoxicity in Rats. Iraqi J Pharm Sci (P-ISSN 1683-3597 E-ISSN 2521-3512). 2022;31(1):87–94. doi:10.31351/vol31iss1pp87-94.
30.    Cimen MY. Free radical metabolism in human erythrocytes. Clin Chim Acta. 2008;390(1-2):1-11. doi: 10.1016/j.cca.2007.12.025.
31.    Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266(1-2):37-56. doi: 10.1023/b:mcbi.0000049134.69131.89.
32.    Wang F, Cao Y, Guo Y, Zhu Z, Zhang C. Evaluation of antioxidant and antibacterial activities of lipid extracts from Eustigmatos cf. polyphem (Eustigmatophyceae) and preliminary identification of bioactive compound. Algal Res. 2021;59:102446. doi:10.1016/j.algal.2021.102446
33.    Deori M, Boruah DC, Devi D, Devi R. Antioxidant and antigenotoxic effects of pupae of the muga silkworm Antheraea assamensis. Food Biosci. 2014;5:108–14. doi:10.1016/j.fbio.2013.12.001
34.    Biswas A, Ahmed M, Bharti VK, Singh SB. Effect of antioxidants on physio-biochemical and hematological parameters in broiler chicken at high altitude. Asian-Australasian J Anim Sci. 2010;24(2):246–9. DOI: 10.5713/ajas.2011.10060
35.    JE H. Guyton and Hall textbook of medical physiology. Philadelphia, PA Saunders Elsevier. 2011;107.
36.    Coşkun HŞ, Er Ö, Tanrıverdi F, Altınbaş M. Hypereosinophilia as a Preclinical Sign of Tongue Squamous Cell Cancer in a Gastric Cancer Patient with Complete Remission. Turk J Haematol. 2003;20(2):107-10.
37.    Guo X, Li H, Xu H, Halim V, Zhang W, Wang H, Ong KT, Woo SL, Walzem RL, Mashek DG, Dong H, Lu F, Wei L, Huo Y, Wu C. Palmitoleate induces hepatic steatosis but suppresses liver inflammatory response in mice. PLoS One. 2012;7(6):e39286. doi: 10.1371/journal.pone.0039286.
38.    Rudkowska I, Paradis AM, Thifault E, Julien P, Tchernof A, Couture P, Lemieux S, Barbier O, Vohl MC. Transcriptomic and metabolomic signatures of an n-3 polyunsaturated fatty acids supplementation in a normolipidemic/normocholesterolemic Caucasian population. J Nutr Biochem. 2013 Jan;24(1):54-61. doi: 10.1016/j.jnutbio.2012.01.016. Epub 2012 Jun 28. PMID: 22748805.
39.    Daak AA, Ghebremeskel K, Mariniello K, Attallah B, Clough P, Elbashir MI. Docosahexaenoic and eicosapentaenoic acid supplementation does not exacerbate oxidative stress or intravascular haemolysis in homozygous sickle cell patients. Prostaglandins Leukot Essent Fatty Acids. 2013;89(5):305-11. doi: 10.1016/j.plefa.2013.09.006.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available