Author(s):
B. G. Prajapati, Chandresh P. Patel, Biswajit Basu
Email(s):
bhupen27@gmail.com
DOI:
10.52711/0974-360X.2023.00270
Address:
B. G. Prajapati1, Chandresh P. Patel1, Biswajit Basu2
1Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Ganpat Vidyanagar 384012, Dist. – Mehsana (Gujarat), India.
2Bengal School of Technology, Sugandha, Delhi Road, Hooghly, Pin - 712 102, W.B.
*Corresponding Author
Published In:
Volume - 16,
Issue - 4,
Year - 2023
ABSTRACT:
Particle engineering techniques have gained a unique place in the present pharma industry to improve physicochemical properties of the drugs. The aim of this research work was to formulate and evaluate directly compressible agglomerates of Levofloxacin HCl with a view to improve their micromeritic properties and thereby to reduce the cost of production. Fluoroquinolone anti-infective, is used to treat bacterial conjunctivitis, sinusitis, chronic bronchitis, community- acquired pneumonia and pneumonia caused by penicillin resistant strains of Streptococcus pneumonia. Some of the fluoroquinolone high dose’s exhibit poor compressibility and flow properties, hence may not be suitable candidate for direct compression process, but by applying the crystallo-co-agglomeration (CCA) technique, the attempt may be made to change the properties of these molecules to make them suitable candidates for direct compression. This investigation was aimed to utilize CCA process to develop spherical agglomerates of levofloxacin HCl in selected polymers in different ratio. The developed spherical agglomerates of levofloxacin HCl may exhibit improved micrometric and dissolution properties hence may be suitable for direct compression process. Results indicated that micromeritic, mechanical and compressional properties of the agglomerates were greatly influenced by nature and type of polymer incorporated. The mean release time, mean dissolution time, dissolution efficiency, Q30 and Q90 of the tablets prepared from agglomerates showed remarkable increase in CCA compared to tablets prepared by wet granulation. Observations also revealed that by varying the type and concentration of polymer, desired release rate can be obtained.
Cite this article:
B. G. Prajapati, Chandresh P. Patel, Biswajit Basu. Microparticulation of Levofloxacin HCl by Crystallo-co-agglomeration Technique. Research Journal of Pharmacy and Technology 2023; 16(4):1651-8. doi: 10.52711/0974-360X.2023.00270
Cite(Electronic):
B. G. Prajapati, Chandresh P. Patel, Biswajit Basu. Microparticulation of Levofloxacin HCl by Crystallo-co-agglomeration Technique. Research Journal of Pharmacy and Technology 2023; 16(4):1651-8. doi: 10.52711/0974-360X.2023.00270 Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-4-18
REFERENCES:
1. Parmar SS, MishraR, Shirolkar SV. 2016. Spherical crystallization a novel approach for solubility and dissolution enhancement of simvastatin. Asian Journal of Pharmaceutical and Clinical Research. 2016; 9(6):65-72. https://doi.org/10.22159/ajpcr.2016.v9i6.13420.
2. Pawar A, Paradkar A, Kadam S,Mahadik K. Agglomeration of Ibuprofen with talc by crystallo-co- agglomeration technique. AAPS Pharm Sci Tech 2004; 5: 30-5.doi: 10.1208/pt050455
3. Sarfaraz Md, Arshad Ahmed Khan K., Doddayya H., Reddy S.R. Udupi R.H.Particle Design of Aceclofenac-Disintegrant Agglomerates for DirectCompression by Crystallo-Co-Agglomeration Technique. Asian J. Pharm. Tech. 2011; 1(2): 40-48. https://ajptonline.com/AbstractView.aspx?PID=2011-1-2-4
4. Swapnil Shankar Patil, Lalita B. Patil, Manoj M. Nitalikar, Chandrakant S. Magdum,Shrinivas K. Mohite.Application of 22level factorial design in formulation and evaluation of spherical agglomerates by solvent change method. Asian J. Pharm. Tech. 2016; 6(4): 217-222.DOI: 10.5958/2231-5713.2016.00032.5
5. B. Soujanya, G. Pavani Priya, T.E.G.K. Murthy. Co-Processing of Excipients: A Review on Excipient Development for Improved tabletting Performance. Research Journal of Pharmaceutical Dosage Forms and Technology.April-June 2015; 7(2): 149-155.DOI: 10.5958/0975-4377.2015.00022.1
6. P. Lekshmi, K. Pramod, K.C. Ajithkumar. Co-Processed Excipients for Tabletting. Research Journal of Pharmaceutical Dosage Forms and Technology 2016; 8(1): 46-54.DOI: 10.5958/0975-4377.2016.00007.0
7. T. Sonica, Dr. T. E. G. K. Murthy. Studies on the Influence of Different Coprocessing Excipients on the Flowand Dissolution kinetics of Donepezil HCl. Research J. Pharm. and Tech. 2013; 6(8): 868-873.https://rjptonline.org/AbstractView.aspx?PID=2013-6-8-19
8. Amol Main, B. A. Bhairav, R. B. Saudager. Co Processed Excipients for Tabletting: Review Article. Research J. Pharm. and Tech. 2017; 10(7): 2427-2432.DOI: 10.5958/0974-360X.2017.00429.2
9. Jyothi Thati, Sailu Chinta. A Review on Spherical Crystallization Mechanisms and Characterization.Research J. Pharm. and Tech.2018; 11(1): 412-417. DOI: 10.5958/0974-360X.2018.00076.8
10. Chettupalli A K, Padmanabha Rao A, Kuchukuntla M, Bakshi V. Development and Optimization of Aripiprazole ODT by using box-Behnken Design. Research J. Pharm. and Tech. 2020; 13(12): 6195-6201.DOI: 10.5958/0974-360X.2020.01080.X
11. Anuj Narang, Usha Y. Nayak, Bisakha Roy, Reema Narayan. Formulation Design of Bilayer Dual-Release Tablet composition ofexofenadine HCl and Montelukast Sodium. Research J. Pharm. and Tech. 2016; 9(9): 1410-1416. DOI: 10.5958/0974-360X.2016.00273.0
12. S. Sujani, R. Hari Babu and K. Ravindra Reddy. Preparation of meloxicam spherical agglomerates to improve dissolutionrate. Asian J. Pharm. Res. 2012; 2(1): 32-36.https://asianjpr.com/AbstractView.aspx?PID=2012-2-1-4.
13. Kallies B, Konig A, Ulrich J. Solidification by crystallization in dropsm international workshop for industrial crystallization, Breman, Germany. 2001; 1993:138.
14. Hooda, A., Nanda, A., Jain, M., Kumar, D., Rathee, P. Optimization and evaluation of gastroretentive ranitidine HCl microspheres by using design expert software. Int. J. Biol. Macromol. 2011; (51): 691–700. https://doi.org/10.1016/j.ijbiomac.2012.07.030
15. Martin A. Physical Pharmacy. 4th ed: Lippincott Williams and Wilkins; 2005: 46- 48.
16. Chatwal GR, Anand SK. Instrumental methods of chemical analysis. 5th ed. New Delhi: Himalaya Publishing House; 2008: 2.42-2.45.
17. Kangale P, Lohray BB, Mishra A, Davada P, Kini R. Formulation and optimization of porous osmotic pump based controlled release system of Oxybutinin. AAPS Pharm Sci Tech 2007; 8(3): E1 to E7.DOI:10.1208/pt0803053.
18. Patel JK, Bodar MS, Amin AF, Patel MM. Formulation and optimization of mucoadhesive microsphere of Metaclopramide. Ind J Pharm Sci 2004; 66(3):300- 305.
19. Jaroz PZ, Parrot EJ. Comparision of granule strength and tablet strength. J Pharm Sci 1983;72:530-535.
20. Varshoshaz J, Tavakoli N, Salamat F. Effect of temperature and stirring rate on flow and compactability properties of Simvastatin spherical crystals. Int J Phar and Pharm Sci 2011;3(3):175-179.
21. Lachman L, Lieberman HA, Kanig JL. The Theory and Practice of Industrial Pharmacy. 2nd ed. Bombay: Varghese Publishing House; 1976: p. 69.
22. Dhanasekaran CB, Sacher I. Development of fast disintegration tablets as oral drug delivery system-a review. Indian J. Pharm. Biol. Res. 2013; 1: 80–99. https://doi.org/10.30750/ijpbr.1.3.13
23. Soni A, Rajoriya V, Kashaw V. Formulation development and evaluation of fast dissolving tablet of Ramipril. Int. J. Pharm. Pharm. Sci. 2015;(7): 127–131.https://innovareacademics.in/journals/index.php/ijpps/article/view/5794.
24. Rane, D., Gulve, H., Patil, VV, Thakare, V., Patil, VR. Formulation and Evaluation of Fast Dissolving Tablet of albendazole. Int. J. Pharm. Res. Sch. 2012; (1): 311–316. https://doi.org/10.31638/ijprs.v7.i2.00030.
25. Reddy RM, Goli D, Kumar S, Nagaraju V, Reddy S. Formulation and evaluation of mouth dissolving tablets of pioglitazone. 85 Int. Res. J. Pharm. Appl. Sci. 2013;(3): 85–89.https://www.scienztech.org/index.php/irjpas/article/view/418.
26. Tapas AR, Kawtikwar PS, Sakarkar DM. Modification of Felodipine Properties using Spherically Agglomerated Solid Dispersions. AmericanJDrug Discovery and Development. 2011; 1(3): 160-173.DOI: 10.3923/ajdd.2011.160.173.
27. Conti S, Segale L, Machiste EO, Conte U, Grenier P, Vernault G. Matrices containing NaCMC and HPMC. Swelling and release mechanism study. Int J Pharm 2007; 331(1-2): 143-151.doi: 10.1016/j.ijpharm.2006.11.067. Epub 2006 Dec 22.