Author(s): Vasily Pavlovich Korotkiy, Vladimir Vladimirovich Zaitsev, Nadezhda Vladimirovna Bogolyubova, Lilia Mikhailovna Zaitseva, Viktor Anatolievich Ryzhov


DOI: 10.52711/0974-360X.2023.00266   

Address: Vasily Pavlovich Korotkiy1, Vladimir Vladimirovich Zaitsev2, Nadezhda Vladimirovna Bogolyubova3, Lilia Mikhailovna Zaitseva2, Viktor Anatolievich Ryzhov1*
1Scientific and Technical Center "Khiminvest", 6/1 Nizhnevolzhskaya Embankment, Nizhny Novgorod, 603001, Russian Federation.
2Department of Bioecology and Physiology of Farm Animals, Faculty of Biotechnology and Veterinary Medicine, Samara State Agrarian University, 2 Uchebnaya str., Ust-Kinelsky, Kinel, Samara region, 446442, Russian Federation.
3Department of Physiology and Biochemistry of Agricultural Animals, Federal Research Center for Animal Husbandry – All-Russian Institute of Animal Husbandry named after academician L.K. Ernst, 60 Dubrovitsy Settlement, Podolsk, Moscow region, 142132, Russian Federation.
*Corresponding Author

Published In:   Volume - 16,      Issue - 4,     Year - 2023

The study aimed to evaluate the effect of a pine tree energy supplement based on forest processing on milk productivity, milk quality, and methane emission by cows. The studies were carried out in production conditions on two groups of black-and-white cows (10 heads each) after calving. The cows of the control group received a basic diet which included haylage of perennial grasses, corn silage, legume hay, compound feed, and molasses. The cows of the experimental group, in addition to the basic diet, received a pine tree energy supplement at a dose of 150 g/head per day. The inclusion of a pine tree energy supplement in the diet of cows at the beginning of lactation led to an increase in the average daily milk yields with the natural fat content by 11.9-12.2% while reducing feed costs per unit of output. The feed supplement in the diet led to a decrease in methane emissions from cows; in the control group of cows, the maximum amount of methane was 446.6 liters per day, whereas in the experimental group it equaled 333.84 liters or 33.0% less. At the same time, the conditional net income from the use of the PTES amounted to 2,617.6 rubles for the period of the experiment per animal.

Cite this article:
Vasily Pavlovich Korotkiy, Vladimir Vladimirovich Zaitsev, Nadezhda Vladimirovna Bogolyubova, Lilia Mikhailovna Zaitseva, Viktor Anatolievich Ryzhov. The effect of a Pine Tree Energy Supplement on Methane release by Lactating cows. Research Journal of Pharmacy and Technology 2023; 16(4):1627-2. doi: 10.52711/0974-360X.2023.00266

Vasily Pavlovich Korotkiy, Vladimir Vladimirovich Zaitsev, Nadezhda Vladimirovna Bogolyubova, Lilia Mikhailovna Zaitseva, Viktor Anatolievich Ryzhov. The effect of a Pine Tree Energy Supplement on Methane release by Lactating cows. Research Journal of Pharmacy and Technology 2023; 16(4):1627-2. doi: 10.52711/0974-360X.2023.00266   Available on:

1.    Lynch J. Garnett T. Policy to reduce greenhouse gas emissions: Is agricultural methane a special case? EuroChoices. 2021; 20(2):11–7. doi: 10.1111/1746-692X.12317
2.    Olijhoek D. Lund P. Methane production by ruminants. Department of Animal science, Aarhus University, Foulum. 2017.
3.    Skytt T. Nielsen SN. Jonsson BG. Global warming potential and absolute global temperature change potential from carbon dioxide and methane fluxes as indicators of regional sustainability - A case study of Jamtland, Sweden. Ecological Indicators. 2020; 110:105831. doi: 10.1016/j.ecolind.2019.105831
4.    Huws SA. Creevey CJ. Oyama LB. Mizrahi I. Denman SE. Popova M. Muñoz-Tamayo R. Forano E. Waters SM. Hess M. Tapio I. Smidt H. Krizsan SJ. Yáñez-Ruiz DR. Belanche A. Guan L. Gruninger RJ. McAllister TA. Newbold CJ. Roehe R. Dewhurst RJ. Snelling TJ. Watson M. Suen G. Hart EH. Kingston-Smith AH. Scollan ND. do Prado RM. Pilau EJ. Mantovani HC. Attwood GT. Edwards JE. McEwan NR. Morrisson S. Mayorga OL. Elliott Ch. Morgavi DP. Addressing global ruminant agricultural challenges through understanding the rumen microbiome: Past, present, and future. Frontiers in Microbiology. 2018; 9:2161. doi: 10.3389/fmicb.2018.02161
5.    Appuhamy JA. France J. Kebreab E. Models for predicting enteric methane emissions from dairy cows in North America, Europe, and Australia and New Zealand. Global Change Biology. 2016; 22(9):3039–56. doi: 10.1111/gcb.13339
6.    Getabalew M. Alemneh T. Akeberegn D. Methane production in ruminant animals: Implication for their impact on climate change. Concepts of Dairy & Veterinary Sciences. 2019; 4:204–10.
7.    Cobellis G. Trabalza-Marinucci M. Yu Z. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Science of the Total Environment. 2016; 545–546:556–68. doi: 10.1016/j.scitotenv.2015.12.103
8.    Engelke SW. Daş G. Derno M. Tuchscherer A. Berg W. Kuhla B. Metges CC. Milk fatty acids estimated by mid-infrared spectroscopy and milk yield can predict methane emissions in dairy cows. Agronomy for Sustainable Development. 2018; 38:27. doi: 10.1007/s13593-018-0502-x
9.    Girard M. Dohme-Meier F. Wechsler D. Goy D. Kreuzer M. Bee G. Ability of 3 tanniferous forage legumes to modify quality of milk and Gruyère-type cheese. Journal of Dairy Science. 2016; 99(1):205–20. doi: 10.3168/jds.2015-9952
10.    Klebaniuk R. Kochman G. Kowalczuk-Vasilev E. Grela ER. Bąkowski M. Olcha M. Dunster F. Energy efficiency of diet for periparturient dairy cows supplemented with free fatty acids or glucogenic additives. Medycyna weterynaryjna. 2016; 72(12):760–7. doi: 10.21521/mw.5599
11.    Denisov SN. Eliseev AV. Mokhov II. Contribution of natural and anthropogenic emissions of CO2 and CH4 to the atmosphere from the territory of Russia to global climate changes in the twenty-first century. Doklady Akademii nauk. 2019; 488(1):74–80. doi: 10.31857/S0869-5652488174-80
12.    Romanovskaya AA. Korotkov VN. Polumieva PD. Trunov AA. Vertyankina VYu. Karaban RT. Greenhouse gas fluxes and mitigation potential for managed lands in the Russian Federation. Mitigation and Adaptation Strategies for Global Change. 2020; 25:661–87. doi: 10.1007/s11027-019-09885-2
13.    Negussie E. de Haas Y. Dehareng D. Dewhurst RJ. Dijkstra J. Gengler N. Morgavi DP. Soyeurt H. van Gastelen S. Yan T. Biscarini F. Invited review: Large-scale indirect measurements for enteric methane emissions in dairy cattle: A review of proxies and their potential for use in management and breeding decisions. Journal of Dairy Science. 2017; 100(4):2433–53. doi: 10.3168/jds.2016-12030
14.    van Gastelen S. Dijkstra J. Prediction of methane emission from lactating dairy cows using milk fatty acids and midinfrared spectroscopy. Journal of the Science of Food and Agriculture. 2016; 96(12):3963–8. doi: 10.1002/jsfa.7718
15.    Vanlierde A. Vanrobays ML. Gengler N. Dardenne P. Froidmont E. Soyeurt H. McParland S. Lewis E. Deighton MH. Mathot M. Dehareng F. Milk mid-infrared spectra enable prediction of lactation-stage-dependent methane emissions of dairy cattle within routine population-scale milk recording schemes. Animal Production Science. 2016; 56:258–64. doi: 10.1071/an15590
16.    He Y. Sun X. You P. Animal, feed and rumen fermentation attributes associated with methane emissions from sheep fed brassica crops. Journal of Animal Physiology and Animal Nutrition. 2021; 105(2):210–8. doi: 10.1111/jpn.13460
17.    Sharma VK. Kundu SS. Datt C. Prusty S. Kumar M. Sontakke UB. Buffalo heifers selected for lower residual feed intake have lower feed intake, better dietary nitrogen utilisation and reduced enteric methane production. Journal of Animal Physiology and Animal Nutrition. 2017; 102(12):e607–14. doi: 10.1111/jpn.12802
18.    Vanlierde A. Soyeurt H. Gengler N. Colinet FG. Froidmont E. Kreuzer M. Grandl F. Bell M. Lund P. Olijhoek DW. Eugène M. Martin C. Kuhla B. Dehareng F. Short communication: Development of an equation for estimating methane emissions of dairy cows from milk Fourier transform mid-infrared spectra by using reference data obtained exclusively from respiration chambers. Journal of Dairy Science. 2018; 101(8):7618–24. doi: 10.3168/jds.2018-14472
19.    Herremans S. Vanwindekens F. Decruyenaere V. Beckers Y. Froidmont E. Effect of dietary tannins on milk yield and composition, nitrogen partitioning and nitrogen use efficiency of lactating dairy cows: A meta-analysis. Journal of Animal Physiology and Animal Nutrition. 2020; 104(5):1209–18. doi: 10.1111/jpn.13341
20.    Castro-Montoya JM. Peiren N. Veneman J. De Baets B. De Campeneere S. Fievez V. Predictions of methane emission levels and categories based on milk fatty acid profiles from dairy cows. Animal. 2017; 11(7):1153–62.
21.    Rico DE. Chouinard PY. Hassanat F. Benchaar C. Gervais R. Prediction of enteric methane emissions from Holstein dairy cows fed various forage sources. Animal. 2016; 10(2):203–11. doi: 10.1017/s1751731115001949
22.    Aboagye IA. Oba M. Castillo AR. Koenig KM. Iwaasa AD. Beauchemin KA. Effects of hydrolyzable tannin with or without condensed tannin on methane emissions, nitrogen use, and performance of beef cattle fed a high-forage diet. Journal of Animal Science. 2018; 96(12):5276–86. doi: 10.1093/jas/sky352
23.    Yang K. Wei C. Zhao GY. Xu ZW. Lin SX. Effects of dietary supplementing tannic acid in the ration of beef cattle on rumen fermentation, methane emission, microbial flora and nutrient digestibility. Journal of Animal Physiology and Animal Nutrition. 2017; 101(2):302–10. doi: 10.1111/jpn.12531
24.    Zhou K. Bao Y. Zhao G. Effects of dietary crude protein and tannic acid on rumen fermentation, rumen microbiota and nutrient digestion in beef cattle. Archives of Animal Nutrition. 2019; 73:30–43. doi: 10.1080/1745039x.2018.1545502
25.    Saradhai P. Nivethithai P. Rajesh Babu V. Nikhat Syeda RN. Effect of Tannins of Herpestis monneira against Selective UTI Pathogens. Research J. Pharm. and Tech. 2010; 3(3):832–834.
26.    Killedar SG. More HN. Seasonal Variation of Tannin Content in Different Parts of Memecylon umbellatum Burm. Research J. Pharm. and Tech. 2011; 4(1):78–81.
27.    Magesh A. Lakshmi T. Preliminary phytochemical analysis of Acacia catechu willd Heartwood extract. Research J. Pharm. and Tech. 2012; 5(11):1393–1395.
28.    Lydia J. Sudarsanam D. Total phenol and total tannin content of Cyperus rotundus L. and its medicinal significance. Research J. Pharm. and Tech. 2012; 5(12):1500–1502.
29.    Abdulsahib HT. Taobi AH. Hashim SS. Removal of Bentonite from Raw water by Novel Coagulant Based on Chitosan and Tannin. Asian J. Research Chem. 2015; 8(4):241–252.
30.    Abdulsahib HT. Taobi AH. Hashim SS. A Novel Adsorbent Based on Lignin and Tannin for the Removal of Heavy Metals from Wastewater. Res. J. Pharmacognosy & Phytochem. 2015; 7(1):38–48.
31.    Aravind R. Sithunnisa PK. Anjitha MA. Alexeyena V. Quantification of Total Phenolics and Tannins in the Bark Extract and Evaluation of Antioxidant Activity of Cinnamomum malabatrum (Burm.F) Blume. Research J. Pharm. and Tech. 2015; 8(1):65–68.
32.    Sagar K. Aneesha S. Uppin P. Gowthami. Phytochemical Studies and Quantification of total content of Phenols, Tannins and Flavonoids in selected endangered plant species. Res. J. Pharmacognosy and Phytochem. 2018; 10(4):277–281.
33.    Raj AAA. Venkataraman JVR. Augustin M. HPTLC Fingerprinting Analysis of Tannin Profile on Canthium coromandelicum and Flueggea leucopyrus willd. Research J. Pharm. and Tech. 2018; 11(12):5355–5358.
34.    Fellah K. Amrouche A. Benmehdi H. Memmou F. Phenolic profile, antioxidants and kinetic properties of flavonoids and Tannins Fractions isolated from Prunus persica L. leaves growing in Southwest Algeria. Research J. Pharm. and Tech. 2019; 12(9):4365–4372.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available