Author(s):
Ahmad Dzulfikri Nurhan, Maria Apriliani Gani, Jamal Nasser Saleh Al-Maamari, Mahardian Rahmadi, Chrismawan Ardianto, Junaidi Khotib
Email(s):
junaidi-k@ff.unair.ac.id
DOI:
10.52711/0974-360X.2023.00194
Address:
Ahmad Dzulfikri Nurhan1, Maria Apriliani Gani2, Jamal Nasser Saleh Al-Maamari2, Mahardian Rahmadi1, Chrismawan Ardianto1, Junaidi Khotib1*
1Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia.
2Doctoral Programme of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia.
*Corresponding Author
Published In:
Volume - 16,
Issue - 3,
Year - 2023
ABSTRACT:
Allergic asthma is a chronic respiratory disease mediated by immunoglobulin E (IgE) and T helper type 2 (Th2) cells. Janus kinase 1 (JAK1) and JAK3, which are interleukin-4 signaling components, are crucial in Th2 cell differentiation. Thus, inhibition of JAK1 and JAK3 is a promising therapeutic target to treat allergic asthma. This study explores the potential of secondary metabolites from various medicinal plants to be developed as JAK1 inhibitors and JAK3 inhibitors through in silico studies. In silico drug-likeness and pharmacokinetic characteristics prediction were performed on 106 secondary metabolites from various medicinal plants using the SwissADME online tool. Molecular docking was carried out on 60 medicinal plant metabolites with characteristics that met the drug-likeness criteria by targeting the Janus kinases family proteins (JAK1, JAK2, JAK3, TYK2) using AutoDockVina software. For the results, a total of ten medicinal plant metabolites, namely aloe emodin; genistein; daidzein; glycitein; apigenin 7,4’-dimethyl ether; laburnetin; formononetin; afrormosin; kaempferol; and isothankunic acid, met the criteria for drug-likeness, had an excellent pharmacokinetic profile, and had appropriate binding energy to the target protein JAK1. Then, as many as three medicinal plant metabolites, namely madasiatic acid; madecassic acid; and lupeol also met the criteria for drug-likeness, had an excellent pharmacokinetic profile, and had proper binding energy to the target protein JAK3. In conclusion, this study was found that several medicinal plant metabolites potential to be developed as JAK1 inhibitors and JAK3 inhibitors.
Cite this article:
Ahmad Dzulfikri Nurhan, Maria Apriliani Gani, Jamal Nasser Saleh Al-Maamari, Mahardian Rahmadi, Chrismawan Ardianto, Junaidi Khotib. In silico Studies of Potential Drug-like Compounds from various Medicinal Plants: The Discovery of JAK1 Inhibitors and JAK3 Inhibitors. Research Journal of Pharmacy and Technology 2023; 16(3):1167-4. doi: 10.52711/0974-360X.2023.00194
Cite(Electronic):
Ahmad Dzulfikri Nurhan, Maria Apriliani Gani, Jamal Nasser Saleh Al-Maamari, Mahardian Rahmadi, Chrismawan Ardianto, Junaidi Khotib. In silico Studies of Potential Drug-like Compounds from various Medicinal Plants: The Discovery of JAK1 Inhibitors and JAK3 Inhibitors. Research Journal of Pharmacy and Technology 2023; 16(3):1167-4. doi: 10.52711/0974-360X.2023.00194 Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-3-30
REFERENCES:
1. Nurmatov U. Van Schayck CP. Hurwitz B. Sheikh A. House dust mite avoidance measures for perennial allergic rhinitis: an updated Cochrane systematic review. Allergy. 2012; 67(2):158-165. https://doi.org/10.1111/j.1398-9995.2011.02752.x
2. Naveen MR, Santhosh YL. Asthma: an overview. Research Journal of Pharmacy and Technology. 2011; 4(6):883-890.
3. Pfaar O. Agache I. de Blay F. Bonini S. Chaker AM. Durham SR. Gawlik R. et al. Perspectives in allergen immunotherapy: 2019 and beyond. Allergy. 2019; 74:3-25. https://doi.org/10.1111/all.14077
4. Kumar AM, Gayathri R, Bhavani K, Khatija R, Ganapathy RS. Clinical Assessment on Knowledge of Garments Dust Induced Bronchial Asthma among Kongu Nadu Textile Workers. Research Journal of Pharmacy and Technology. 2019; 12(6):2721-2723. https://doi.org/10.5958/0974-360X.2019.00455.4
5. Lambrecht BN. Hammad H. The immunology of asthma. Nature immunology. 2015; 16(1):45-56. https://doi.org/10.1038/ni.3049
6. Agache I. Palmer E. Sanver D. Kirtland M. Shamji MH. Molecular allergology approach to allergic asthma. Molecular Aspects of Medicine. 2021; 101027. https://doi.org/10.1016/j.mam.2021.101027
7. Mokif TA, Hassan AJ, Nabat ZN. Evaluation of some Physiological Parameters in patients with Asthma. Research Journal of Pharmacy and Technology. 2019; 12(5):2425-2429. https://doi.org/10.5958/0974-360X.2019.00407.4
8. Kim YM. Kim YS. Jeon SG. Kim YK. Immunopathogenesis of allergic asthma: more than the th2 hypothesis. Allergy, asthma & immunology research. 2013; 5(4):189-196. https://doi.org/10.4168/aair.2013.5.4.189
9. Bontinck A. Maes T. Joos G. Asthma and air pollution: recent insights in pathogenesis and clinical implications. Current opinion in pulmonary medicine. 2020; 26(1):10-19. https://doi.org/10.1097/MCP.0000000000000644
10. Durrant DM. Metzger DW. Emerging roles of T helper subsets in the pathogenesis of asthma. Immunological investigations. 2010; 39(4-5):526-549. https://doi.org/10.3109/08820131003615498
11. Dave PH, Preetha. Pathogenesis and Novel Drug for Treatment of Asthma – A Review. Research Journal of Pharmacy and Technology. 2016; 9(9):1519-1523. https://doi.org/10.5958/0974-360X.2016.00297.3
12. Yen HR. Liang KL. Huang TP. Fan JY. Chang TT. Sun MF. Characteristics of traditional Chinese medicine use for children with allergic rhinitis: a nationwide population-based study. International journal of pediatric otorhinolaryngology. 2015; 79(4):591-597. https://doi.org/10.1016/j.ijporl.2015.02.002
13. Liang KL. Yu SJ. Huang WC. Yen HR. Luteolin attenuates allergic nasal inflammation via inhibition of interleukin-4 in an allergic rhinitis mouse model and peripheral blood from human subjects with allergic rhinitis. Frontiers in pharmacology. 2020; 11:291. https://doi.org/10.3389/fphar.2020.00291
14. Pavithra G. Aloe Vera (Aloe barbadensis) – A Short Review. Research Journal of Pharmacy and Technology. 2014; 7(3):332-334.
15. Lee D. Kim HS. Shin E. Do SG. Lee CK. Kim YM. Lee MB. et al. Polysaccharide isolated from Aloe vera gel suppresses ovalbumin-induced food allergy through inhibition of Th2 immunity in mice. Biomedicine & pharmacotherapy. 2018; 101:201-210. https://doi.org/10.1016/j.biopha.2018.02.061
16. Park JH. Choi JY. Son DJ. Park EK. Song MJ. Hellström M. Hong JT. Anti-inflammatory effect of titrated extract of Centella asiatica in phthalic anhydride-induced allergic dermatitis animal model. International journal of molecular sciences. 2017; 18(4):738. https://doi.org/10.3390/ijms18040738
17. Gadelha FAAF. Cavalcanti RFP. Vieira GC. Ferreira LKDP. de Sousa GR. Barbosa Filho JM. Barbosa MA. et al. Immunomodulatory properties of Musa paradisiaca L. inflorescence in Combined Allergic Rhinitis and Asthma Syndrome (CARAS) model towards NFκB pathway inhibition. Journal of Functional Foods. 2021; 83:104540. https://doi.org/10.1016/j.jff.2021.104540
18. Chiavaroli A. Di Simone SC. Sinan KI. Ciferri MC. Angeles Flores G. Zengin G. Etienne OK. et al. Pharmacological properties and chemical profiles of Passiflora foetida L. Extracts: Novel insights for pharmaceuticals and nutraceuticals. Processes. 2020; 8(9):1034. https://doi.org/10.3390/pr8091034
19. Vo TS. Kim YS. Ngo DN. Ngo DH. The role of Rhodomyrtus tomentosa (aiton) hassk. Fruits in downregulation of mast cells-mediated allergic responses. BioMed research international. 2019; 2019. https://doi.org/10.1155/2019/3505034
20. Nirmal SA. Patel AP. Bhawar SB. Pattan SR. Antihistaminic and antiallergic actions of extracts of Solanum nigrum berries: possible role in the treatment of asthma. Journal of ethnopharmacology. 2012; 142(1):91-97. https://doi.org/10.1016/j.jep.2012.04.019
21. Matsui F. Meldrum KK. The role of the Janus kinase family/signal transducer and activator of transcription signaling pathway in fibrotic renal disease. journal of surgical research. 2012; 178(1):339-345. https://doi.org/10.1016/j.jss.2012.06.050
22. O'Shea JJ. Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity. 2012; 36(4):542-550. https://doi.org/10.1016/j.immuni.2012.03.014
23. Bao L. Zhang H. Chan LS. The involvement of the JAK-STAT signaling pathway in chronic inflammatory skin disease atopic dermatitis. Jak-Stat. 2013; 2(3):e24137. https://doi.org/10.4161/jkst.24137
24. Nurhan AD. Gani MA. Budiatin AS. Siswodihardjo S. Khotib J. Molecular docking studies of Nigella sativa L and Curcuma xanthorrhiza Roxb secondary metabolites against histamine N-methyltransferase with their ADMET prediction. Journal of Basic and Clinical Physiology and Pharmacology. 2021; 32(4):795-802. https://doi.org/10.1515/jbcpp-2020-0425
25. Debasish S, Tripti S. Molecular Docking studies of 3-substituted 4-phenylamino coumarin derivatives as Chemokine receptor inhibitor. Research Journal of Pharmacy and Technology. 2021; 14(2):943-948. https://doi.org/10.5958/0974-360X.2021.00168.2
26. Gani MA. Nurhan AD. Maulana S. Siswodihardjo S. Shinta DW. Khotib J. Structure-based virtual screening of bioactive compounds from Indonesian medical plants against severe acute respiratory syndrome coronavirus-2. Journal of Advanced Pharmaceutical Technology & Research. 2021; 12(2):120. https://doi.org/10.4103/japtr.JAPTR_88_21
27. Aiyalu R, Lakshmanan K, Balasubramanian HB, Ramasamy A. Screening of Iridoids and Seco-iridoids in Gentianaceae Family against Liver corrective Targets using Molecular Docking studies. Research Journal of Pharmacy and Technology. 2019; 12(12):5735-5738. https://doi.org/10.5958/0974-360X.2019.00992.2
28. Nurhan AD. Gani MA. Maulana S. Siswandono S. Ardianto C. Khotib J. Molecular Docking Studies for Protein-Targeted Drug Development in SARS-CoV-2. Letters in Drug Design & Discovery. 2021; 18. https://doi.org/10.2174/1570180818666210512021619
29. Gani MA. Nurhan AD. Budiatin AS. Siswodihardjo S. Khotib J. Predicting the molecular mechanism of glucosamine in accelerating bone defect repair by stimulating osteogenic proteins. Journal of basic and clinical physiology and pharmacology. 2021; 32(4):373-377. https://doi.org/10.1515/jbcpp-2020-0403
30. Parameswari P, Devika R. In silico Molecular Docking Studies of Quercetin Compound against Anti-inflammatory and Anticancer Proteins. Research Journal of Pharmacy and Technology. 2019; 12(11):5305-5309. https://doi.org/10.5958/0974-360X.2019.00919.3
31. Muralikrishnan A, Nair RR, Banu J, Pappachen LK. In silico designing of some Benzimidazole derivatives for Anti-fungal activity. Research Journal of Pharmacy and Technology. 2021; 14(9):4983-4986. https://doi.org/10.52711/0974-360X.2021.00867
32. Menet CJ. Van Rompaey L. Geney R. Advances in the discovery of selective JAK inhibitors. Progress in medicinal chemistry. 2013; 52:153-223. https://doi.org/10.1016/B978-0-444-62652-3.00004-1
33. Gonzales AJ. Bowman JW. Fici GJ. Zhang M. Mann DW. Mitton‐Fry M. Oclacitinib (APOQUEL®) is a novel Janus kinase inhibitor with activity against cytokines involved in allergy. Journal of veterinary pharmacology and therapeutics. 2014; 37(4):317-324. https://doi.org/10.1111/jvp.12101
34. Deka G, Pkm N, Redhwan M, Varghese MM. IFNγ: Signalling, Epigenetics and Roles in Immunity, Metabolism, Disease and Cancer Immunotherapy. Research Journal of Pharmacy and Technology. 2020; 13(8):4028-4032. https://doi.org/10.5958/0974-360X.2020.00712.X
35. Vadivelan R, Jasti T, Nanjundan P, Adhikari Gautam, Arun T. Beneficial effects of Tryosine kinase Inhibitor Imatinib on Striatal Motor behaviour in 6-OHDA lesioned rat model. Research Journal of Pharmacy and Technology. 2019; 12(8):3745-3750. https://doi.org/10.5958/0974-360X.2019.00641.3
36. Gao Y. Zhang X. Li X. Qi R. Han Y. Kang Y. Cai R. Peng C. Qi Y. Aloe-emodin, a naturally occurring anthraquinone, is a highly potent mast cell stabilizer through activating mitochondrial calcium uniporter. Biochemical Pharmacology. 2021; 186:114476. https://doi.org/10.1016/j.bcp.2021.114476
37. Gao F. Wei D. Bian T. Xie P. Zou J. Mu H. Zhang B. et al. Genistein attenuated allergic airway inflammation by modulating the transcription factors T-bet, GATA-3 and STAT-6 in a murine model of asthma. Pharmacology. 2012; 89(3-4):229-236. https://doi.org/10.1159/000337180
38. Razeghi JS. Arrefhosseini SR. Ghaemi A. Alizadeh A. Moradi TH. Togha M. Alleviation of experimental allergic encephalomyelitis in C57BL/6 mice by soy daidzein. Iranian Journal of Allergy, Asthma and Immunology. 2014; 13(4):256-264. https://doi.org/10.1016/j.ijdevneu.2015.04.295
39. Masilamani M. Wei J. Bhatt S. Paul M. Yakir S. Sampson HA. Soybean isoflavones regulate dendritic cell function and suppress allergic sensitization to peanut. Journal of allergy and clinical immunology. 2011; 128(6):1242-1250. https://doi.org/10.1016/j.jaci.2011.05.009
40. Krishna MS. Joy B. Sundaresan A. Effect on oxidative stress, glucose uptake level and lipid droplet content by Apigenin 7, 4'-dimethyl ether isolated from Piper longum L. Journal of food science and technology. 2015; 52(6):3561-3570. https://doi.org/10.1007/s13197-014-1387-6
41. Kuete V. Ngameni B. Simo CF. Tankeu RK. Ngadjui BT. Meyer JJM. Lall N. Kuiate JR. Antimicrobial activity of the crude extracts and compounds from Ficus chlamydocarpa and Ficus cordata (Moraceae). Journal of ethnopharmacology. 2008; 120(1):17-24. https://doi.org/10.1016/j.jep.2008.07.026
42. Li L. Wang Y. Wang X. Tao Y. Bao K. Hua Y. Guorong J. et al. Formononetin attenuated allergic diseases through inhibition of epithelial-derived cytokines by regulating E-cadherin. Clinical Immunology. 2018; 195:67-76. https://doi.org/10.1016/j.clim.2018.07.018
43. Yi L. Cui J. Wang W. Tang W. Teng F. Zhu X. Qin J. et al. Formononetin Attenuates Airway Inflammation and Oxidative Stress in Murine Allergic Asthma. Frontiers in Pharmacology. 2020; 11:1350. https://doi.org/10.3389/fphar.2020.533841
44. Lopes AA. Magalhães TR. Uchôa DEA. Silveira ER. Azzolini AE. Kabeya LM. Lucisano-Valim YM. et al. Afrormosin, an Isoflavonoid from A mburana cearensis AC S mith, Modulates the Inflammatory Response of Stimulated Human Neutrophils. Basic & clinical pharmacology & toxicology. 2013; 113(6):363-369. https://doi.org/10.1111/bcpt.12106
45. Gong JH. Shin D. Han SY. Kim JL. Kang YH. Kaempferol suppresses eosionphil infiltration and airway inflammation in airway epithelial cells and in mice with allergic asthma. The Journal of nutrition. 2012; 142(1):47-56. https://doi.org/10.3945/jn.111.150748
46. Bylka W. Znajdek‐Awiżeń P. Studzińska‐Sroka E. Dańczak‐Pazdrowska A. Brzezińska M. Centella asiatica in dermatology: an overview. Phytotherapy Research. 2014; 28(8):1117-1124. https://doi.org/10.1002/ptr.5110
47. Brinkhaus B. Lindner M. Schuppan D. Hahn EG. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella aslatica. Phytomedicine. 2000; 7(5):427-448. https://doi.org/10.1016/S0944-7113(00)80065-3
48. Vasconcelos JF. Teixeira MM. Barbosa-Filho JM. Lúcio ASSC. Almeida JRGDS. De Queiroz LP. Ribeiro-dos-Santos R., et al. The triterpenoid lupeol attenuates allergic airway inflammation in a murine model. International immunopharmacology. 2008; 8(9):1216-1221. https://doi.org/10.1016/j.intimp.2008.04.011
49. Ahmad SF. Pandey A. Kour K. Bani S. Downregulation of pro‐inflammatory cytokines by lupeol measured using cytometric bead array immunoassay. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2010; 24(1):9-13. https://doi.org/10.1002/ptr.2844