Author(s): Jyotsna Pandit Khedkar, Sreemoy Kanti Das, Prashant Suresh Salunke, Sandeep Poddar


DOI: 10.52711/0974-360X.2023.00189   

Address: Jyotsna Pandit Khedkar1*, Sreemoy Kanti Das1, Prashant Suresh Salunke1, Sandeep Poddar2
1Faculty of Pharmacy, Lincoln University College, Wisma Lincoln, 12-18, Jalan SS 6/12, 47301 Petaling Jaya, Selangor D. E., Malaysia.
2Deputy Vice Chancellor (Research & Innovation), Lincoln University College, Wisma Lincoln, 12-18, Jalan SS 6/12, 47301 Petaling Jaya, Selangor D. E., Malaysia.
*Corresponding Author

Published In:   Volume - 16,      Issue - 3,     Year - 2023

Background: The purpose of this study is to determine how amiodarone, an antiarrhythmic medication, affects Glibenclamide's hypoglycemic activity in normal and diabetic rats when administered in multiple doses over seven days. Methods: The researchers intended to explore how glibenclamide and amiodarone pharmacologically interact in normal and diabetic rats. These tests were performed on the same group of rats after the provided medications Glibenclamide 1.03 mg/kg body weight and Amiodarone 50 mg/kg body weight had been entirely eliminated, i.e. after the drugs had been totally eliminated. The drugs were administered orally. After taking blood samples from the tail vein at predetermined intervals, the glucose levels were estimated using the GOD/POD technique. Results:The findings showed that numerous doses of amiodarone, an antiarrhythmic medication, affected the hypoglycaemic action of Glibenclamide in normal and diabetic rats when provided alone and in combination with Glibenclamide. This might be because amiodarone and Glibenclamide have a pharmacokinetic interaction. Conclusion: Preliminary research suggests that the combination has a pharmacokinetic interaction in diabetic patients with arrhythmia. As a result, blood glucose levels needed to be closely monitored.

Cite this article:
Jyotsna Pandit Khedkar, Sreemoy Kanti Das, Prashant Suresh Salunke, Sandeep Poddar. Amiodarone’s effect on the Pharmacokinetics of Glibenclamide in Healthy and Diabetic Rats. Research Journal of Pharmacy and Technology 2023; 16(3):1134-8. doi: 10.52711/0974-360X.2023.00189

Jyotsna Pandit Khedkar, Sreemoy Kanti Das, Prashant Suresh Salunke, Sandeep Poddar. Amiodarone’s effect on the Pharmacokinetics of Glibenclamide in Healthy and Diabetic Rats. Research Journal of Pharmacy and Technology 2023; 16(3):1134-8. doi: 10.52711/0974-360X.2023.00189   Available on:

1.    May M. Schindler C. Clinically and pharmacologically relevant interactions of antidiabetic drugs. Therapeutic advances in endocrinology and metabolism. 2016 ;7(2):69-83.
2.    Yamreudeewong W. DeBisschop M. Martin LG. Lower DL. Potentially significant drug interactions of class III antiarrhythmic drugs. Drug Safety. 2003 ;26(6):421-38.
3.    Konieczny KM. Dorian P. Clinically important drug–drug interactions between antiarrhythmic drugs and anticoagulants. The Journal of Innovations in Cardiac Rhythm Management. 2019;10(3):3552.
4.    Rai A. Eapen C. Prasanth VG. Interaction of herbs and glibenclamide: a review. International Scholarly Research Notices. 2012;2012.
5.    Prashanth S. Kumar AA. Madhu B. Rama N. Sagar JV. Pharmacokinetic and pharmacodynamic drug interactions of carbamazepine and glibenclamide in healthy albino Wistar rats. Journal of Pharmacology & Pharmacotherapeutics. 2011 ;2(1):7.
6.    Ravindran S. Zharikova OL. Hill RA. Nanovskaya TN. Hankins GD. Ahmed MS. Identification of glyburide metabolites formed by hepatic and placental microsomes of humans and baboons. Biochemical pharmacology. 2006 ;15;72(12):1730-7.
7.    Shuster DL. Risler LJ. Prasad B. Calamia JC. Voellinger JL. Kelly EJ. Unadkat JD. Hebert MF. Shen DD. Thummel KE. Mao Q. Identification of CYP3A7 for glyburide metabolism in human fetal livers. Biochemical pharmacology. 2014 15;92(4):690-700.
8.    Wilkinson GR. Drug metabolism and variability among patients in drug response. New England Journal of Medicine. 2005 May 26;352(21):2211-21.
9.    Slaughter RL. Edwards DJ. Recent advances: the cytochrome P450 enzymes. Annals of Pharmacotherapy. 1995;29(6):619-24.
10.    Michalets EL. Update: clinically significant cytochrome P‐450 drug interactions. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 1998 2;18(1):84-112.
11.    Daly AK. King BP. Pharmacogenetics of oral anticoagulants. Pharmacogenetics and Genomics. 2003  1;13(5):247-52.
12.    Sproule BA. Otton S. Cheung SW. Zhong XH. Romach MK. Sellers EM. CYP2D6 inhibition in patients treated with sertraline. Journal of clinical psychopharmacology. 1997 1;17(2):102-6.
13.    Bradford LD. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics. 2002 1;3(2):229-43.
14.    Meyer UA. Pharmacogenetics and adverse drug reactions. The Lancet. 2000 11;356(9242):1667-71.
15.    Singh BN. Williams EV. The effect of amiodarone, a new anti-anginal drug, on cardiac muscle. British journal of pharmacology. 1970 ;39(4):657.
16.    Siddoway LA. Amiodarone: guidelines for use and monitoring. American family physician. 2003  1;68(11):2189-96.
17.    Trinder P. Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. Journal of clinical pathology. 1969  1;22(2):158-61.
18.    Sharma SP, Anjankar AP, Kale A. Comparison of glucose levels using glucometer and GOD-POD Method in diabetic patients. Int. J. Clin. Biochem. Res. 2017;4(1):6-10.
19.    Riley V. Adaptation of orbital bleeding technic to rapid serial blood studies. Proceedings of the Society for Experimental Biology and Medicine. 1960 ;104(4):751-4.
20.    Svensson CK, Drobitch RK, Kloss KA. Effect of Glutathione Depletion on the In Vivo Inhibition of Drug Metabolism by Agents Forming an Inactive Cytochrome P-450 Fe (ll): Metabolite Complex. Studies with Amiodarone and Troleandomycin. Journal of pharmaceutical sciences. 1991 Mar 1;80(3):225-8.
21.    Sahi J. Black CB. Hamilton GA. Zheng X. Jolley S. Rose KA. Gilbert D. LeCluyse EL. Sinz MW. Comparative effects of thiazolidinediones on in vitro P450 enzyme induction and inhibition. Drug Metabolism and Disposition. 2003  1;31(4):439-46.
22.    Holstein A. Plaschke A. Hammer C. Egberts EH. Characteristics and time course of severe glimepiride-versus glibenclamide-induced hypoglycaemia. European journal of clinical pharmacology. 2003 ;59(2):91-7.
23.    Goodman G. Hardman J. Limbird L. Goodman GA. Insulin, Oral Hypoglycaemic agents and the pharmacology of endocrine pancreas. Pharmacol Basis Ther. 2006;60:1686-710.
24.    Scheen AJ. Drug interactions of clinical importance with antihyperglycaemic agents. Drug safety. 2005 ;28(7):601-31.
25.    Shah S. Patel K. Pathan M. Evaluation of the Effect of Piperine on Bioavailability and Pharmacokinetics of Macrolides in Rats. Asian Journal of Research in Pharmaceutical Science. 2018;8(2):61-7.
26.    Dengle SJ. Pathak SM. Mohan C. Karthik A. Musmade P. Bhat K. Udupa N. Analysis of Midazolam in Small Volumes of Plasma Using High Performance Liquid Chromatography and UV-Detection Method: Pharmacokinetics of Midazolam in Rats. Asian Journal of Research in Chemistry. 2011;4(3):406-14..
27.    Rajasekaran A. Arulsolomon T. Dharuman J. Validated HPLC Method for the Analysis of Clozapine in Rat Plasma and its Application to Pharmacokinetics. Asian Journal of Research in Chemistry. 2013 Jul 1;6(7):4.
28.    Suresh DK. Ingale VB. Gavali MS. Thakar BN. NG RR. A Study on Effect of Amiodarone on the Pharmacokinetics of Oral Hypoglycaemic Agents in Normal Rabbits. Research Journal of Pharmacology and Pharmacodynamics. 2012  29;4(4):221-4.
29.    Murthy TG. Mayuren C. Pharmacokinetics of Gliclazide Alone and in Combination with Irbesartan in Rabbits. Research Journal of Pharmacy and Technology. 2008  28;1(4):418-21.
30.    Narmada D. Krishna PV. Yusuf SM. Ranganayakulu B. Praveen KU. Abhilash PR. RP-HPLC method development and validation for estimation of Glibenclamide in tablet dosage form. Asian Journal of Pharmaceutical Analysis. 2014;4(3):125-8..
31.    Pranali S. Sisode. Hasumati A. Raj. Vineet C. Jain. Simultaneous determination of Saxagliptin Hydrochloride and Glibenclamide in Synthetic Mixture using Spectrophotometric technique (First order Derivative Method). Asian J. Pharm. Ana. 2016; 6(2): 77-82.
32.    SisodePranali S. Jain Vinit C. Prajapati Neelam. Pharmacology of Combined Treatment of Saxagliptin Hydrochloride and Glibenclamide Therapy to treat Type-2 Diabetes. Asian J. Res. Pharm. Sci. 6(1): ., 2016; Page 59-61.
33.    AVS Madhu Latha. T Naga Ravikiran. J N Suresh Kumar. Formulation, Optimization and Evaluation of Glibenclamide Transdermal Patches by using chitosan Polymer. Asian J. Pharm. Tech. 2019; 9(1):01-07.
34.    Harikrishnan N. Muralikrishna U. Shaik B, Bhavsar V. Manjusha V. Kumar VR. Development and Validation of UV Spectrophotometric Method of Glibenclamide (Glyburide) in Bulk and Pharmaceutical Formulation. Asian Journal of Research in Chemistry. 2010  28;3(2):316-8.
35.    HidayatusSya’diyah. Dya Sustrami. Yoga Kertapati. Novi Sari Anggraini. Effect Of Herbal Therapy Steeping Salam Leaf To Decrease In Blood Glucose Levels In Elderly Patients With Diabetes Mellitus In The Village Of Sukodono Subdistrict Of Sidoarjo City . Malaysian Journal of Medical Research (MJMR), 5(3), 34-38.
36.    Lau B. Ng, S. Anuar, M. A. Shuhaila. A Pattern of Use and Prevalence of Potentially Inappropriate Medications among Elderly Patients in a Malaysia Suburban Hospital. International Journal of Advancement in Life Sciences Research, 2(3), 30-38.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available