Author(s): Haider Ali Alnaji, Rabab Omran, Azhar Hamza Hassan

Email(s): , ,

DOI: 10.52711/0974-360X.2023.00176   

Address: Haider Ali Alnaji1,2, Rabab Omran2, Azhar Hamza Hassan3
1Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq.
2Biology Department, College of Science, Babylon University, Babylon, Iraq.
*Corresponding Author

Published In:   Volume - 16,      Issue - 3,     Year - 2023

Background: Diabetes mellitus and thyroid disease are linked endocrinopathies. The association between diabetes mellitus complications and thyroid function is characterized by a complicated interdependent interplay that is difficult to understand. Objective: We conducted this study to determine the association between diabetic retina disease (DRD) incidence and normal thyroid hormone levels in T2DM. Methods: Recruit patients in the study, 134 patients with type 2 diabetes and 36 healthy ones with no DM, were screened in the present case-control study. Diabetic retinopathy was tested for all patients, and anthropometric and thyroid functions were assessed. Regression analyses were employed to evaluate the relationship between thyroid hormones and the risk of developing DR. Results: There were significant differences in triiodothyronine (T3) and thyroxine (T4) serum levels among the DR groups and the healthy control. The levels in each TSH and T4 are positively significant between groups of PDR and NDR, while T3 was negatively associated with NPDR. A significant association was found between increasing levels of T3 and the development of severe DR; thus, PDR was less likely to occur in individuals with high T3 levels? [OR 0.014(95% CI, 0.001-0.34) P value is 0.009 after adjustment. The risk of PDR had an increased likelihood of developing PDR at the highest levels of serum TSH and T4 [OR 41.07(1.60-1053.1) P= 0.025, OR 65.91(2.10-2067) P= 0.017, respectively). Conclusion: Diabetes retinopathy in euthyroid Iraqi people may be associated with levels of T3 and T4 in the blood. Patients with higher TSH and T4 concentrations had a greater risk of developing sight-threatening PDR in type 2 diabetics.

Cite this article:
Haider Ali Alnaji, Rabab Omran, Azhar Hamza Hassan. Alterations of Thyroid Hormone Levels and the Risks of Diabetic Retinopathy in T2DM. Research Journal of Pharmacy and Technology 2023; 16(3):1053-9. doi: 10.52711/0974-360X.2023.00176

Haider Ali Alnaji, Rabab Omran, Azhar Hamza Hassan. Alterations of Thyroid Hormone Levels and the Risks of Diabetic Retinopathy in T2DM. Research Journal of Pharmacy and Technology 2023; 16(3):1053-9. doi: 10.52711/0974-360X.2023.00176   Available on:

1.    Alnaji, H. A., Nuwaini, M. Q. al, Duaibel, A. K. abdul J., Neamah, G. A.-D. T., and Almulla, A. F. (2022). Low levels of postprandial C-peptide are clinically significant in non-proliferative diabetic retinopathy and diabetic macular oedema in Iraqi patients with type 2 diabetes. International Journal of Health Sciences, 8258–8267.
2.    Fadheel, Q. J. (2019). A Comparative Study of the effect of Metformin and Metformin plus Garlic on Blood Glucose Level in patients with Type 2 Diabetes Mellitus in Iraq. Research Journal of Pharmacy and Technology, 12(4), 1806–1810.
3.    Veena Prabavathy, J., and Sangeetha, R. (2019). Stress induced type 2 diabetes mellitus among industrial workers – A review. Research Journal of Pharmacy and Technology, 12(1), 396–402.
4.    Duaibel, A.- karrar K. abdul J., Alnaji, H. A., Abdulhadi, A. M. H., Almulla, A. F., AL-attraqchi, A. M. M., and Rahim, I. Q. (2022). The role of MCP-1 in the developments of diabetic nephropathy in patients with type 2 diabetes mellitus patients. International Journal of Health Sciences, 6(S2), 8158–8166.
5.    Alnaji, H. A., Hassan, A. H., and Omran, R. (2022). Genetic polymorphism of AKR1B1 with diabetic retinopathy. International Journal of Health Sciences, 6(S3), 8310–8315.
6.    Jose, C., and Aju, D. (2018). A Hybrid Method for Diabetic Retinopathy Diagnosis through Blood Vessel Extraction and Exudates Identification from 2D Fundus Image. Research Journal of Pharmacy and Technology, 11(3), 1147–1152.
7.    Patidar, D., Patidar, K., and Chaudhari, M. (2019). A Study to Assess the Effectiveness of Planned Teaching Program on Knowledge regarding Prevention of Diabetic Retinopathy. International Journal of Advances in Nursing Management, 7(3), 237–239.
8.    Abdul Jaleel, A. K., Almulla, A. F., Alnaji, H. A., Mansor, M. R., and Abbas Abo Algon, A. (2022). Diabetes Mellitus and Non-Proliferative Diabetic Retinopathy Are Accompanied by Increase Pro-Inflammatory Conditions Indicated by a High Blood-Derived Levels of Monocyte Chemoattractant Protein-1 and Interleukin-8. Iranian Journal of War and Public Health, 14(2), 203–210.
9.    Iyapparaja, M., and Sivakumar, P. (2019). Detecting diabetic retinopathy exudates in digital image processing hybrid methodology. Research Journal of Pharmacy and Technology, 12(1), 57–61.
10.    Wu, J., Yue, S., Geng, J., Liu, L., Teng, W., Liu, L., and Chen, L. (2015). Relationship between diabetic retinopathy and subclinical hypothyroidism: a meta-analysis. Scientific Reports, 5(1), 1–6.
11.    Sivaprasad, S. (2022). Epidemiological Study on complications of Diabetes and its Treatment Options. Asian Journal of Pharmacy and Technology, 38–40.
12.    Zhang, X., Saaddine, J. B., Chou, C.-F., Cotch, M. F., Cheng, Y. J., Geiss, L. S., Gregg, E. W., Albright, A. L., Klein, B. E. K., and Klein, R. (2010). Prevalence of diabetic retinopathy in the United States, 2005-2008. Jama, 304(6), 649–656.
13.    Zheng, Y., He, M., and Congdon, N. (2012). The worldwide epidemic of diabetic retinopathy. Indian Journal of Ophthalmology, 60(5), 428.
14.    Li, J. Q., Welchowski, T., Schmid, M., Letow, J., Wolpers, C., Pascual-Camps, I., Holz, F. G., and Finger, R. P. (2020). Prevalence, incidence and future projection of diabetic eye disease in Europe: a systematic review and meta-analysis. In European journal of epidemiology (Vol. 35, Issue 1, pp. 11–23). Springer.
15.    Yang, Q.-H., Zhang, Y., Zhang, X.-M., and Li, X.-R. (2019). Prevalence of diabetic retinopathy, proliferative diabetic retinopathy and non-proliferative diabetic retinopathy in Asian T2DM patients: a systematic review and meta-analysis. International Journal of Ophthalmology, 12(2), 302.
16.    Teo, Z. L., Tham, Y.-C., Yu, M., Chee, M. L., Rim, T. H., Cheung, N., Bikbov, M. M., Wang, Y. X., Tang, Y., Lu, Y., and others. (2021). Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology, 128(11), 1580–1591.
17.    Steinmetz, J. D., Bourne, R. R. A., Briant, P. S., Flaxman, S. R., Taylor, H. R. B., Jonas, J. B., Abdoli, A. A., Abrha, W. A., Abualhasan, A., Abu-Gharbieh, E. G., and others. (2021). Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. The Lancet Global Health, 9(2), e144--e160.
18.    Ahmed, D., and Makhous, R. (2020). Evaluation of the effect of metformin therapy on tsh serum levels in diabetic patients. Research Journal of Pharmacy and Technology, 13(8), 3801.
19.    Al Mamun, M. S., Nahar, N., Salekin, M. S., and Rahman, M. M. (2017). Thyroid hormonal status in newly diagnosed type 2 diabetes mellitus. Bangladesh Journal of Nuclear Medicine, 20(1), 27–31.
20.    Nishi, M. (2018). Diabetes mellitus and thyroid diseases. Diabetology International, 9(2), 108–112.
21.    Parimal, K. P., Mayuresh, H. R., Jagdish, B. R., and Satish, M. S. (2020). Herbal Anti-Thyroid Drugs: An Overview. Research Journal of Pharmacy and Technology, 13(10), 5045–5051.
22.    Biondi, B., Kahaly, G. J., and Robertson, R. P. (2019). Thyroid dysfunction and diabetes mellitus: two closely associated disorders. Endocrine Reviews, 40(3), 789–824.
23.    Anandkumar, S., Chacko, J., K, T. C., and Usha, M. (2020). Thyroid Disorder: An Overview. Research Journal of Pharmacology and Pharmacodynamics, 12(1), 1.
24.    Hussain, B., AL-Harbi, H., Pharmacy, M. A.-R. J. of, and 2019, undefined. (2019). Impact of Thyroidectomy in BMI and Some Biochemical Markers related with Bone Turnover in Hypothyroidism Women. Researchgate.Net.
25.    Chutia, H., Bhattacharyya, H., Ruram, A. A., Bora, K., and Chakraborty, M. (2018). Evaluation of thyroid function in type 2 diabetes in north-eastern part of India: A hospital-based study. Journal of Family Medicine and Primary Care, 7(4), 752.
26.    Qi, Q., Zhang, Q.-M., Li, C.-J., Dong, R.-N., Li, J.-J., Shi, J.-Y., Yu, D.-M., and Zhang, J.-Y. (2017). Association of thyroid-stimulating hormone levels with microvascular complications in type 2 diabetes patients. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 23, 2715.
27.    Han, C., He, X., Xia, X., Li, Y., Shi, X., Shan, Z., and Teng, W. (2015). Subclinical hypothyroidism and type 2 diabetes: a systematic review and meta-analysis. PLoS One, 10(8), e0135233.
28.    Yang, J.-K., Liu, W., Shi, J., and Li, Y.-B. (2010). An association between subclinical hypothyroidism and sight-threatening diabetic retinopathy in type 2 diabetic patients. Diabetes Care, 33(5), 1018–1020.
29.    Stefanowicz-Rutkowska, M. M., Baranowska-Jurkun, A., Matuszewski, W., and Bandurska-Stankiewicz, E. M. (2020). Thyroid dysfunction in patients with diabetic retinopathy. Endokrynologia Polska, 71(2), 176–183.
30.    Ittermann, T., Dörr, M., Völzke, H., Tost, F., Lehmphul, I., Köhrle, J., and Jürgens, C. (2014). High serum thyrotropin levels are associated with retinal arteriolar narrowing in the general population. Thyroid, 24(10), 1473–1478.
31.    Lin, D., Qin, R., and Guo, L. (2022). Thyroid stimulating hormone aggravates diabetic retinopathy through the mitochondrial apoptotic pathway. Journal of Cellular Physiology, 237(1), 868–880.
32.    Kong, X., Wang, J., Gao, G., Tan, M., Ding, B., Li, H., and Ma, J. (2020). Association between free thyroxine levels and diabetic retinopathy in euthyroid patients with type 2 diabetes mellitus. Endocrine Research, 45(2), 111–118.
33.    Zou, J., Li, Z., Tian, F., Zhang, Y., Xu, C., Zhai, J., Shi, M., Wu, G., Zhang, Z., Yang, C., and others. (2020). Association between Normal thyroid hormones and diabetic retinopathy in patients with type 2 diabetes. BioMed Research International, 2020.
34.    Almulla, A. F., Vasupanrajit, A., Tunvirachaisakul, C., Al-Hakeim, H. K., Solmi, M., Verkerk, R., and Maes, M. (2022). The tryptophan catabolite or kynurenine pathway in schizophrenia: meta-analysis reveals dissociations between central, serum, and plasma compartments. Molecular Psychiatry 2022, 1–13.
35.    Adler, A. I. (2000). SI, Neil HA, Yudkin JS, Matthews DR, Cull CA, Wright AD, Turner RC, Holman RR. Association of systolic blood pressure with macrovascular and microvascular complications of type2 diabetes (UKPDS 36): prospective observational study. BMJ, 321(7258), 412–419.
36.    Group, U. K. P. D. S. (UKPDS), and others. (1998). Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). The Lancet, 352(9131), 837–853.
37.    Klein, R., Klein, B. E. K., Moss, S. E., Davis, M. D., and DeMets, D. L. (1984). The Wisconsin epidemiologic study of diabetic retinopathy: IV. Diabetic macular edema. Ophthalmology, 91(12), 1464–1474.
38.    Kim, B.-Y., Kim, C.-H., Jung, C.-H., Mok, J.-O., Suh, K.-I., and Kang, S.-K. (2011). Association between subclinical hypothyroidism and severe diabetic retinopathy in Korean patients with type 2 diabetes. Endocrine Journal, 1109140625.
39.    Kreft, H., and Jetz, W. (2007). Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences, 104(14), 5925–5930.
40.    Lee, K., Roth, R. A., and LaPres, J. J. (2007). Hypoxia, drug therapy and toxicity. Pharmacology \and Therapeutics, 113(2), 229–246.
41.    Ma, H., Thapa, A., Morris, L., Redmond, T. M., Baehr, W., and Ding, X.-Q. (2014). Suppressing thyroid hormone signaling preserves cone photoreceptors in mouse models of retinal degeneration. Proceedings of the National Academy of Sciences, 111(9), 3602–3607.
42.    Duncan, K. G., Bailey, K. R., Baxter, J. D., and Schwartz, D. M. (1999). The human fetal retinal pigment epithelium: a target tissue for thyroid hormones. Ophthalmic Research, 31(6), 399–406.
43.    Chaker, L., Buitendijk, G. H. S., Dehghan, A., Medici, M., Hofman, A., Vingerling, J. R., Franco, O. H., Klaver, C. C. W., and Peeters, R. P. (2015). Thyroid function and age-related macular degeneration: a prospective population-based cohort study-the Rotterdam Study. BMC Medicine, 13(1), 1–8.
44.    Czarnywojtek, A., Owecki, M., Zgorzalewicz-Stachowiak, M., Woliński, K., Szczepanek-Parulska, E., Budny, B., Florek, E., Waligórska-Stachura, J., Miechowicz, I., B\kaczyk, M., and others. (2014). The role of serum C-reactive protein measured by high-sensitive method in thyroid disease. Archivum Immunologiae et Therapiae Experimentalis, 62(6), 501–509.
45.    Ahmed, A., Waris, A., Naheed, A., and Anjum, A. (2017). Diabetic Retinopathy and its Correlation with Thyroid Profile and Anti Thyroid Antibodies. IOSR-JDMS, 16(1), 96–98.
46.    Rodacki, M., Zajdenverg, L., Dantas, J. R., de Oliveira, J. E. P., Luiz, R. R., Cobas, R. A., Palma, C. C. S., Negrato, C. A., and Gomes, M. B. (2014). Should thyroid-stimulating hormone goals be reviewed in patients with type 1 diabetes mellitus? Results from the Brazilian Type 1 Diabetes Study Group. Diabetic Medicine, 31(12), 1665–1672.
47.    Sailesh, S., Randeva, H. S., Callaghan, C. J. O., OHare, P., Hare, P. O., Philip, S., Saravanan, P., and Patel, V. (2018). The THOR effect: thyroid hormone offsets retinopathy. J Endocrinol Thyroid Res, 3(1), 555605.
48.    Napoli, R., Biondi, B., Guardasole, V., Matarazzo, M., Pardo, F., Angelini, V., Fazio, S., and Saccà, L. (2001). Impact of hyperthyroidism and its correction on vascular reactivity in humans. Circulation, 104(25), 3076–3080.
49.    Cai, Y., Manio, M. M., Leung, G. P. H., Xu, A., Tang, E. H. C., and Vanhoutte, P. M. (2015). Thyroid hormone affects both endothelial and vascular smooth muscle cells in rat arteries. European Journal of Pharmacology, 747, 18–28.
50.    Ojamaa, K., Klemperer, J. D., and Klein, I. (1996). Acute effects of thyroid hormone on vascular smooth muscle. Thyroid, 6(5), 505–512.
51.    Duaibel, A. K. K. A. J., Al-Janahi, F. A. A., Naji, A. M., and Alnaji, H. A. (2022). Glu298Asp polymorphism in exon 7 of the eNOS gene in foot ulcer of adult patients with type 2 diabetes. AIP Conference Proceedings, 2386.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available