Author(s):
Arathi K N, Sindhu T J, Vishnu M V, Basith M A, Anitha S V, Annlisa Roy, Arundhathi T, Ashly George, Asish S
Email(s):
kn.arathi@gmail.com
DOI:
10.52711/0974-360X.2023.00175
Address:
Arathi K N1*, Sindhu T J1, Vishnu M V2, Basith M A3, Anitha S V1, Annlisa Roy1, Arundhathi T1, Ashly George1, Asish S1
1Department of Pharmaceutical Chemistry, Sanjo College of Pharmaceutical Studies, Vellapara, Kuzhalmannam, Palakkad, Kerala - 678702, India.
2Department of Pharmaceutical Chemistry, Chemists College of Pharmaceutical Sciences and Research, Puthencruz, Ernakulam, Kerala - 682308, India.
3Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Sector 67, S.A.S. Nagar, Mohali, Punjab -160062, India.
*Corresponding Author
Published In:
Volume - 16,
Issue - 3,
Year - 2023
ABSTRACT:
In this work we aimed to design synthesis and evaluate the N-Mannich bases of pyrazole. A novel series of N-Mannich bases of pyrazole analogues were designed and synthesized with an effort to overcome the increasing antibiotic resistance. Tyrosyl-tRNA synthetase (TyrRS) comprises an N-terminal domain, which has the fold of the class I aminoacyl-tRNA synthetases. Computational Autodock 4.2 tools will be employed in this study for docking of pyrazole ligand molecules against Tyrosyl-tRNA synthetase (TyrRS) of Escherichia coli (PDB code: 1x8x) and Staphylococcus aureus (PDB code: 1jil.pdb). Molinspiration server was used for lead optimization. The ligand molecules were subjected to molecular docking studies with enzyme Tyrosyl-tRNA synthetase. The molecular docking studies are supported to compare in-vitro antibacterial activity by the use of binding energy of the docked ligand molecules. The newly synthesized compounds were characterized by UV, IR and various physico-chemical methods. Further, the antibacterial activity of N-Mannich bases of pyrazole compounds were assessed with zone of inhibition by agar well diffusion method using gram negative bacterial strain Escherichia coli and gram-positive strain staphylococcus aureus. These same compounds were subjected to find the antifungal activity against Aspergillus fumigates and Aspergillus Niger.
Cite this article:
Arathi K N, Sindhu T J, Vishnu M V, Basith M A, Anitha S V, Annlisa Roy, Arundhathi T, Ashly George, Asish S. Synthesis, Molecular Docking and Characterization of Pyrazole N-Mannich Base Derivatives as Antimicrobial Agents. Research Journal of Pharmacy and Technology 2023; 16(3):1047-2. doi: 10.52711/0974-360X.2023.00175
Cite(Electronic):
Arathi K N, Sindhu T J, Vishnu M V, Basith M A, Anitha S V, Annlisa Roy, Arundhathi T, Ashly George, Asish S. Synthesis, Molecular Docking and Characterization of Pyrazole N-Mannich Base Derivatives as Antimicrobial Agents. Research Journal of Pharmacy and Technology 2023; 16(3):1047-2. doi: 10.52711/0974-360X.2023.00175 Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-3-11
REFERENCES:
1. Principles of medicinal chemistry (2nd edition) by Ashatoshkar; 1-12.
2. Ranjana A. Sunil K. Shiv PS. Sodium carbonate-mediated facile synthesis of 4-substituted-2-(3,5-dimethylpyrazol-1-yl) thiazoles under solvent-free conditions. Journal of Sulfur Chemistry. 2012; 33(5): 521-525. doi.org/10.1080/17415993.2012.711331.
3. Alam MM. Marella A. Akhtar M. Microwave assisted one photosynthesis some Pyrazole derivative as an analgesic agent, Acta Polnia Pharmaceutical Drug Research. 2013; 70(3): 435-441. pubmed.ncbi.nlm.nih.gov/23757934
4. Ansari A. Ali A. Asif M. Biologically active Pyrazole derivative. New Journal of Chemistry. 2017; 41: 16-41. doi.org/10.1039/C6NJ03181A
5. Rahimizadeh M. pordel M. Bakavoli M. Rezaeian S. Sadeghian A. synthesis and antibacterial activation some new derivatives of Pyrazole. World Journal of Microbial Biotechnology. 2010; 26: 317-321. DOI:10.1007/S11274-009-0178-0
6. Chandrakantha B. Isloor S. Malladi S. Shetty. Fun H. Synthesis characterization and antimicrobial activity of novel ethyl 1-(N substituted) - 5-phenyl -1-H-pyrazole-4-carboxylate derivative. Medicinal Chemistry Research. 2012; 21: 2702-2708. DOI:10.1107/S1600536811049282
7. Bhatt H. Sharma S. Synthesis and antimicrobial activity of Pyrazole nucleus containing 2-thioxothiazolidine 4-one derivative. Arabian Journal of Chemistry. 2017; 10: 1496. doi.org/10.1016/j.arabjc.2013.05.029
8. Abanda N. Hasaean H. Kandile N. Miqdad O. Synthesis Antimicrobial Activity of some new pyrazole, fused pyrazolo [3,4-d] pyrimidine and Pyrazole [4,3-e] [1,2,3]-triazolo [1,5-c] Pyrimidine Derivative Molecules. 2008; 13: 1501 -1517. 10.3390/molecules13071501
9. Ragavan RV. Vijayakumar V. Kumari N. S Synthesis and antimicrobial activities of novel 1,5 -diaryl pyrazolos. Medicinal Chemistry. 2010; 45: 1173- 1180. 10.1016/j.ejmech.2009.12.042
10. Textbook of Heterocyclic Chemistry. Joule JA and Mills K .5th edition; 503-509.
11. Anita SG. Nayana VP. Yogita RI. An Overview on A Pyrazole : Promising Moiety. Asian Journal of Pharmacy and Technology. 2015; 5(4): 201-213. doi.org/10.5958/2231-5713.2015.00030.6
12. Vishal M. Rajesh SS. Synthesis of Some Biological Active Pyrazole Derivatives. Asian Journal of Research in Chemistry. 2013; 6(11): 1060-1064. doi.org/10.5958/0974-4150
13. Biplab D. Sandip S TS. Easwari. Chemistry and Therapeutic Review of Pyrazole. Asian Journal of Research in Chemistry. 2012; 5(12): 1482-1502. DOI: 10.5958/0974-4150
14. Shantaram G. Khanage, Popat B. Mohite, S. Appala Raju. Synthesis, Anticancer and Antibacterial Activity of Some Novel 1, 2, 4-Triazole Derivatives Containing Pyrazole and Tetrazole Rings. Asian Journal of Research in Chemistry. 2011; 4(4): Page 567-573. DOI: 10.5958/0974-4150
15. Pisano MB. Kumar A. Medda R. Gatto G. Pal R. Fais A. Era B. Cosentino S. Uriarte E. Santana L. Pintus F. Matos MJ. Antibacterial Activity and Molecular Docking Studies of a Selected Series of Hydroxy-3-arylcoumarins. Molecules. 2019; 24(15): 2815. doi: 10.3390/molecules24152815
16. Shaula S, Balwant KM and Durlabh KS. Molecular drug targets and structure-based drug design: A holisticapproach. Bioinformation. 2006; 314-320. DOI: 10.6026/97320630001314
17. Hemalatha K. Joseph S. Girija K. Synthesis, In silico Molecular Docking Study and Anti-bacterial Evaluation of some Novel 4-Anilino Quinazolines. Asian Journal of Pharmaceutical Research. 2018; 8(3): 125-132. DOI: 10.5958/0974-360X
18. Peter JE, Alan PB and Martin KB. ADME/PK as part of a rational approach to drug discovery. Drug Discovery Today.2000; 409-414. DOI: 10.1016/s1359-6446(00)01540-3
19. Giulio V. Alessandro P. Bernard T. Assessing drug-likeness-what are we missing? Drug Discovery Today 2008; 285-294. DOI: 10.1016/j.drudis.2007.11.007
20. Terry PL. Ligand-protein docking and rational drug design. Current Opinion in Structural Biology.1995; 224-228. DOI: 10.1016/0959-440x(95)80080-8
21. Textbook of Advanced Organic Chemistry, Reactions, Mechanisms and Structures. Jerry March. 4th edition; 900-903. DOI: 10.1016/0959-440x(95)80080-8
22. Bansal RK. Heterocyclic chemistry, synthesis, reactions and mechanisms. Fourth Edition. Wiley Eastern Ltd. 514-525.
23. Govindarao K. Srinivasan N. Ravi SK. Suresh R. Synthesis, Characterization and Antimicrobial Evaluation of N-Mannich Bases of (2- Substituted Phenyl) Benzimidazole Derivatives. Asian Journal of Pharmaceutical Research. 2018; 8(2): 87-93. DOI: 10.5958/2231-5691.2018.00015.1
24. Sindhu. TJ. Arathi. K.N. Akhila D. Aswathi. TA. Noushida M. Midhun. M. Sajil SK. Synthesis, Molecular Docking and Antibacterial Studies of Novel Azole derivatives as Enoyl ACP Reductase Inhibitor in Escherichia coli. Asian Journal of Research in Pharmaceutical Sciences. 2019; 9(3): 174-180. DOI: 10.5958/2231-5659.2019.00027.4
25. Sushil RM. Vikas B. Abhay SB. Jairaj KD. Synthesis of Some New N-Mannich Bases Derivatives of Phenytoin. Asian J. Research Chem. 2018; 11(2):236-240. DOI: 10.5958/0974-4150.2018.00044.5
26. Faruk A. Synthesis and Biological Evaluation of Some Pyrazole-based Mannich Bases. Research Journal of Pharmacy and Technology. 2019; 12(9):4225-4230. DOI: 10.5958/0974-360X.2019.00726.1
27. Bhusari KP. Amnerkar ND. Khedekar PB. Kale MK. Bhole RP. Synthesis and In Vitro Antimicrobial Activity of Some New 4-Amino-N-(1,3- Benzothiazol-2-yl) benzenesulphonamide Derivatives. Asian Journal of Research Chemistry. 2008; 1(2): 53-58. DOI: 10.5958/0974-4150
28. Arathi KN, Basith MA , Muneera M , Aneena VB, Amal J And Vishnu Priya G. Drug Design, Synthesis, Characterization and Antibacterial Studies of Novel Benzimidazole Derivatives as DNA Gyrase Inhibitor In Escherichia Coli. International Journal of Biology, Pharmacy and Allied Science. 2021, 10 (10); 3522-3530. doi.org/10.31032/IJBPAS/2021/10.10.5660.
29. Cappuccino James and Sherman Natalie. Microbiology Laboratory Manual. 10th edition. 13-15.
30. Sheehan DJ. Hitchcock CA. Sibley CM. Current and emerging azole antifungal agents. Clinical Microbiology Reviews.1999; 40-79. DOI:10.1099/jmm.0.000185
31. Qing R. Weilong S. Xiaomei H. Xiancai R. Staphylococcus aureus ST121: a globally disseminated hypervirulent clone. Journal of Medical Microbiology. 2015; 64:1462–1473. DOI: 10.1099/jmm.0.000185
32. Person AK, Chudgar SM, Norton BL, Tong BC and Stout JE. Aspergillus niger: an unusual cause of invasive pulmonary aspergillosis. Journal of Medical Microbiology. 2010;59:834–838. DOI: 10.1099/jmm.0.018309-0
33. Fang. Latge. Microbe Profile: Aspergillus fumigatus: a saprotrophic and opportunistic fungal pathogen. Microbiology. 2018; 164: 1009–1011. DOI: 10.1099/mic.0.000651