Author(s): Indah Listiana Kriswandini, Tantiana, Aulya Ariffany Mahardhika, Aqsa Sjuhada Oki

Email(s): indah-l-k@fkg.unair.ac.id

DOI: 10.52711/0974-360X.2023.00137   

Address: Indah Listiana Kriswandini1*, Tantiana1, Aulya Ariffany Mahardhika2, Aqsa Sjuhada Oki1
1Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
2Undergraduate Student Faculty of Dental Medicine, Universitas Airlangga, Surabaya- Indonesia.
*Corresponding Author

Published In:   Volume - 16,      Issue - 2,     Year - 2023


ABSTRACT:
Aggregatibacter actinomycetemcomitans caused oral infection in recent years. It requires advancements in health technology, such as infection and sickness detection kits. This study purposed to provide data to aid in the detection kits. Aggregatibacter actinomycetemcomitans was prepared to be biofilm cultured sample. Then the samples were induced by glucose, lactose, soy protein, and iron. Scanning Electron Microscopy Energy Dispersive X-Ray, Confocal Laser Scanning Microscopy, and Olympus FluoView ver 4.2a were used to analyze the ultrastructural dimension of biofilms. The surface structure of biofilm induced by iron differed from that of biofilms induced by other inducers. O(78.65±10.32) and Cl(1.28±0.21) were the most abundant chemical compounds induced by glucose; S(14.67±4.56) and Fe(37.46±59.62) were induced by lactose; C(25.41±16.36) and N(13.49±9.37) were induced by soy protein; and P(58.53±17.80) was induced by iron. Iron induced the highest amount of polysaccharides (605.641±71.66). Lactose (857.877±70.86) induced the greatest number of bacterium cells. Iron (11.000±1000)nm caused the thickest layer. The biofilm of Aggregatibacter actinomycetemcomitans induced by glucose, lactose, soy protein, and iron are all different.


Cite this article:
Indah Listiana Kriswandini, Tantiana, Aulya Ariffany Mahardhika, Aqsa Sjuhada Oki. The Surface Structure, Chemical Molecules, and Thickness of Aggregatibacter actinomycetemcomitans biofilms by Different Inducers Agent. Research Journal of Pharmacy and Technology 2023; 16(2):799-3. doi: 10.52711/0974-360X.2023.00137

Cite(Electronic):
Indah Listiana Kriswandini, Tantiana, Aulya Ariffany Mahardhika, Aqsa Sjuhada Oki. The Surface Structure, Chemical Molecules, and Thickness of Aggregatibacter actinomycetemcomitans biofilms by Different Inducers Agent. Research Journal of Pharmacy and Technology 2023; 16(2):799-3. doi: 10.52711/0974-360X.2023.00137   Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-2-56


REFERENCES:
1.    DEPKES R. Riset Kesehatan Dasar. 2013
2.    Ridwan RD, Sidarningsih, Wijayanti U. The Anti-Bacterial Activity of Gingival Mucoadhesive Patch from Thymus vulgaris Essential Oil towards Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum. Research Journal of Pharmacy and Technology 2021; 14: 645–649. doi.org/10.5958/0974-360X.2021.00115.3
3.    Wijaksana I. Infectobesity dan Periodontitis: Hubungan Dua Arah Obesitas dan Penyakit Periodontal. Odonto : Dental Journal 2016; 3: 67–73. doi.org/10.30659/odj.3.1.67-73
4.    Nazir MA. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int J Health Sci (Qassim) 2017; 1: 72–80.
5.    Nugraha AP, Sibero MT, Nugraha AP, et al. Anti-Periodontopathogenic Ability of Mangrove Leaves (Aegiceras corniculatum) Ethanol Extract: In silico and in vitro study. European Journal of Dentistry 2022. doi.org/10.1055/s-0041-1741374
6.    Ni’mah M, Kriswandini IL, Baktir A. Antigenic Protein Profile of Streptococcus mutans Biofilm for Developing of Dental Caries and Periodontal Disease Risk Biomarker. IOP Conf Ser: Earth Environ Sci 2019; 217: 012050. doi.org/10.1088/1755-1315/217/ 1/012050
7.    R V, P DG. Characterization and Biofilm Detection among Clinically Important Candida Species. Research Journal of Pharmacy and Technology 2016; 9: 1375–1378. doi.org/10.5958/ 0974-360X.2016.00263.8
8.    Da Cunda P, Iribarnegaray V, Papa-Ezdra R, et al. Characterization of the Different Stages of Biofilm Formation and Antibiotic Susceptibility in a Clinical Acinetobacter baumannii Strain. Microb Drug Resist 2020; 26: 569–575. doi.org/ 10.1089/mdr.2019.0145
9.    Hollman B, Perkins M, Walsh D. Biofilms and Their Role in Pathogenesis. Centre of Biomolecular Sciences, University of Nottingham 2020
10.    Zhang Q, Ni Y, Kokot S. Competitive Interactions between Glucose and Lactose with BSA: which Sugar is Better for Children? Analyst 2016; 141: 2218–2227.doi.org/10.1039/ C5AN02420J
11.    I NZ, Prakasam G. Oral Biofilms. Research Journal of Pharmacy and Technology 2016; 9: 1812–1814. doi.org/10.5958/0974-360X.2016.00368.1
12.    Pratiwi SUT, Hamzah H. Inhibition and Degradation Activity of (Sapindus rarak seeds) Ethanol Extract Against Polymicrobial Biofilm. Research Journal of Pharmacy and Technology 2020; 13: 5425–5430. doi.org/10.5958/0974-360X.2020.00947.6
13.    Abdelghafar A, Yousef N, Askoura M. Combating Staphylococcus aureus biofilm with Antibiofilm Agents as an Efficient Strategy to Control Bacterial Infection. Research Journal of Pharmacy and Technology 2020; 13:5601–5606. doi.org/ 10.5958/0974-360X.2020.00977.4
14.    Nishinari K, Fang Y, Guo S, Phillips GO. Soy Proteins: A Review on Composition, Aggregation and Emulsification. Food Hydrocolloids 2014; 39: 301–318. doi.org/10.1016/ j.foodhyd.2014.01.013
15.    Speziale P, Pietrocola G, Foster TJ, Geoghegan JA. Protein-Based Biofilm Matrices in Staphylococci. Frontiers in Cellular and Infection Microbiology 2014; 4: 171. doi.org/10.3389/ fcimb.2014.00171
16.    Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology 2016; 14: 563–575. doi.org/10.1038/ nrmicro.2016.94
17.    Oh E, Andrews KJ, Jeon B. Enhanced Biofilm Formation by Ferrous and Ferric Iron Through Oxidative Stress in Campylobacter jejuni. Frontiers in Microbiology 2018; 9: 1204. doi.org/10.3389/fmicb.2018.01204
18.    Ramadhani NF, Nugraha AP, Putra Gofur NR, Hakiki D, Ridwan RD. Elevation of C-Reactive Protein in Chronic Periodontitis Patient As Cardiovascular Disease Risk Factor. Biochemical and Cellular Archives 2020; 20: 2875–2878. doi.org/10.35124/ bca.2020.20.S1.2875
19.    Vyas N, Sammons RL, Addison O, Dehghani H, Walmsley AD. A Quantitative Method To Measure Biofilm Removal Efficiency from Complex Biomaterial Surfaces Using SEM and Image Analysis. Scientific Reports 2016; 6: 32694. doi.org/10.1038/ srep32694
20.    Desmond P, Best JP, Morgenroth E, Derlon N. Linking Composition of Extracellular Polymeric Substances (EPS) to the Physical Structure and Hydraulic Resistance of Membrane Biofilms. Water Research 2018; 132: 211–221. doi.org/10.1016/ j.watres.2017.12.058
21.    Ramadhani NF, Nugraha AP, Gofur NRP, Permatasari RI, Ridwan RD. Increased Levels of Malondialdehyde and Cathepsin C by Aggregatibacter actinomycetemcomitans in Saliva as Aggressive Periodontitis Biomarkers. Biochemical and Cellular Archives 2020; 20: 2895–2901.
22.    Rai V, Dey N. The Basics of Confocal Microscopy. 2011. doi.org/ 10.5772/16214
23.    Mongkolrob R, Taweechaisupapong S, Tungpradabkul S. Correlation Between Biofilm Production, Antibiotic Susceptibility and Exopolysaccharide Composition in Burkholderia pseudomallei bpsI, ppk, and rpoS Mutant Strains. Microbiol Immunol 2015; 59: 653–663. doi.org/10.1111/1348-0421.12331
24.    Loterie D, Farahi S, Papadopoulos I, Goy A, Psaltis D, Moser C. Digital Confocal Microscopy Through A Multimode Fiber. Optics Express 2015; 23: 23845–23858. doi.org/10.1364/OE.23.023845
25.    Goldstein J, Newbury DE, Joy DC, et al. Scanning Electron Microscopy and X-Ray Microanalysis: Third Edition. 2003. doi.org/10.1007/978-1-4615-0215-9
26.    Avula A, Galor A, Blackwelder P, et al. Application of Scanning Electron Microscopy With Energy-Dispersive X-Ray Spectroscopy for Analyzing Ocular Surface Particles on Schirmer Strips. Cornea 2017; 36: 752–756. doi.org/10.1097/ ICO.0000000000001173
27.    Abbas HA, Serry FM, EL-Masry EM. Biofilms: The Microbial Castle of Resistance. Research Journal of Pharmacy and Technology 2013; 6: 01–03.
28.    Stauch-White K, Srinivasan VN, Kuo-Dahab WC, Park C, Butler CS. The Role of Inorganic Nitrogen in Successful Formation of Granular Biofilms for Wastewater Treatment That Support Cyanobacteria And Bacteria. AMB Express 2017; 7. doi.org/ 10.1186/s13568-017-0444-8
29.    Fulaz S, Vitale S, Quinn L, Casey E. Nanoparticle-Biofilm Interactions: The Role of the EPS Matrix. Trends Microbiol 2019; 27: 915–926. doi.org/10.1016/j.tim.2019.07.004
30.    Li X, Pei H, Hu W, et al. The fate of Microcystis aeruginosa Cells during The Ferric Chloride Coagulation and Flocs Storage Processes. Environ Technol 2015; 36: 920–928. doi.org/10.1080/ 09593330.2014.966768
31.    Lu L, Hu W, Tian Z, et al. Developing Natural Products as Potential Anti-Biofilm Agents. Chinese Medicine 2019; 14: 1–17. doi.org/10.1186/s13020-019-0232-2
32.    Tandra Das T, Gopinath P. Biofilm Formation Among Enterococci Species. Research Journal of Pharmacy and Technology 2016; 9: 1877–1879.
33.    Chaturvedi R, Chandra P, Mittal V. Biofilm Formation by Acinetobacter Spp. in Association with Antibiotic Resistance in Clinical Samples Obtained from Tertiary Care Hospital. Research Journal of Pharmacy and Technology 2019; 12: 3737–3742. doi.org/10.5958/0974-360X.2019.00620.6
34.    Utami DT, Pratiwi SUT, Haniastuti T, Hertiani T. Degradation of Oral Biofilms by Zerumbone from Zingiber zerumbet (L.). Research Journal of Pharmacy and Technology 2020; 13: 3559–3564. doi.org/10.5958/0974-360X.2020.00629.0
35.    Rajkumari J, Borkotoky S, Murali A, Suchiang K, Mohanty SK, Busi S. Attenuation of Quorum Sensing Controlled Virulence Factors and Biofilm Formation in Pseudomonas aeruginosa by Pentacyclic Triterpenes, Betulin and Betulinic Acid. Microbial Pathogenesis 2018; 118: 48–60. Doi.Org/10.1016/ J.Micpath.2018.03.012
36.    Henry AJ, R SA, R D. Evaluation of Disinfectant Action on Biofilm Bacteria. Research Journal of Pharmacy and Technology 2018; 11: 910–912. doi.org/10.5958/0974-360X.2018.00168.3
37.    Abdul-Lateef LA, Hassan E, TahaAbd-AllaBactash E. Effect of Cranberry on Biofilm Formation by P. mirabilis Isolated from Patients Suffering from Urinary Tract Infections. Research Journal of Pharmacy and Technology 2018; 11: 1097–1100. doi.org/ 10.5958/0974-360X.2018.00206.8
38.    Ampornaramveth RS, Akeatichod N, Lertnukkhid J, Songsang N. Application of D-Amino Acids as Biofilm Dispersing Agent in Dental Unit Waterlines. International Journal of Dentistry 2018; 2018: e9413925. doi.org/10.1155/2018/9413925

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available