MENU

Author(s): Surya Prabha Sadhu, Rajeswara Rao Pragada, Prasad Konduri, Nagendra Sastry Yarla

Email(s): sprabha125@gmail.com

DOI: 10.52711/0974-360X.2023.00104   

Address: Surya Prabha Sadhu1,2*, Rajeswara Rao Pragada1, Prasad Konduri2, Nagendra Sastry Yarla3
1AU College of Pharmaceutical Sciences, Department of Pharmacology, Andhra University, Visakhapatnam – 530003, Andhra Pradesh, India.
2Department of Pharmacology, Shri Vishnu College of Pharmacy, Bhimavaram, West Godavari District – 534202, Andhra Pradesh, India.
3Department of Biochemistry, GITAM Institute of Science,GITAM University, Visakhapatnam – 530045, Andhra Pradesh, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 2,     Year - 2023


ABSTRACT:
Objectives: The present study reports antioxidant potential, the in-vitro antiproliferative activity of saccharumoside-B, and molecular docking studies on the binding affinity of saccharumoside-B towards various proteins involved in breast cancer pathogenesis. Methods: The in-vitro antioxidant activity of saccharumoside-B was determined by DPPH, superoxide and nitric oxide free radical scavenging assays. The antiproliferative activity was evaluated in-vitro by MTT assay. The binding affinity of saccharumoside-B towards the HSP90, HER2, human estrogen receptor and tyrosine-protein kinase C-SRC were determined by the molecular docking studies. Results: Saccharumoside-B showed a significant dose-dependent antioxidant activity and potent dose-dependent antiproliferative effect on the MCF-7 breast cancer cell line (IC50 = 22.57±0.39µM) among all other cell lines studied. Tamoxifen was used as a positive control for MCF-7 cell line (IC50 = 27.97±1.07µM). The IC50 of saccharumoside-B on normal MCF-10A cell line (IC50>1000µM) showed a promising safety profile, whereas tamoxifen’s IC50 on MCF-10A normal cell line was found to be 29.6 ± 0.84 µM. The molecular docking analysis revealed that saccharumoside-B was inserted into the active site pockets of all the tested proteins involved in the breast cancer pathogenesis with varying binding affinities. Conclusion: The antioxidant studies revealed the potential antioxidant effect of saccharumoside-B. The in-vitro and in-silico studies are indicating the safe and multiple target protein inhibitory potential of saccharumoside-B against breast cancer. This study suggests that saccharumoside-B can be developed into a new class of anticancer drugs with a high safety profile in the future.


Cite this article:
Surya Prabha Sadhu, Rajeswara Rao Pragada, Prasad Konduri, Nagendra Sastry Yarla. Anticancer, Antioxidant Activity and Molecular Docking Studies of Saccharumoside-B. Research Journal of Pharmacy and Technology 2023; 16(2):608-4. doi: 10.52711/0974-360X.2023.00104

Cite(Electronic):
Surya Prabha Sadhu, Rajeswara Rao Pragada, Prasad Konduri, Nagendra Sastry Yarla. Anticancer, Antioxidant Activity and Molecular Docking Studies of Saccharumoside-B. Research Journal of Pharmacy and Technology 2023; 16(2):608-4. doi: 10.52711/0974-360X.2023.00104   Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-2-23


REFERENCES:
1.    Phaniendra A, Jestadi DB, Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J Clin Biochem. 2015;30(1):11-26. doi:10.1007/s12291-014-0446-0
2.    Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44-84. doi:10.1016/j.biocel.2006.07.001
3.    Satria D, Silalahi J, Haro G, Ilyas S, Hsb PAZ. Antioxidant and Antiproliferative Activities of an Ethylacetate Fraction of Picria Fel-Terrae Lour. Herbs. Asian Pac J Cancer Prev. 2017;18(2):399-403. doi:10.22034/APJCP.2017.18.2.399
4.    Manikandan R, Anand AV. A Review on Antioxidant activity of Psidium guajava. Research Journal of Pharmacy and Technology. 2015;8(3):339-342. doi:10.5958/0974-360X.2015.00056.6
5.    Deshmukh SR, Habtemariam S, Wadegaonkar PA. Antioxidant and Antiproliferative Activity of Root Suspension Culture of Morinda citrifolia L. Research Journal of Pharmacy and Technology. 2010;3(4):1189-1193. Accessed December 1, 2021. https://rjptonline.org/AbstractView.aspx?PID=2010-3-4-153
6.    Gul MZ, Bhat MY, Maurya R, Qureshi IA, Ghazi IA. In vitro Evaluation of Antioxidant and Antiproliferative Activities of Artemisia nilagirica Extracts. Indian Journal of Pharmaceutical Sciences. 2018;79(6):872-884. doi:10.4172/pharmaceutical-sciences.1000303
7.    Sahu RK, Singh H, Roy A. Antioxidative characteristics of ethanol and aqueous extracts of Curcuma amada rhizomes. Research Journal of Pharmacognosy and Phytochemistry. 2009;1(1):41-43. Accessed December 1, 2021. http://rjpponline.org/AbstractView.aspx?PID=2009-1-1-10
8.    Pizzino G, Irrera N, Cucinotta M, et al. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev. 2017;2017:8416763. doi:10.1155/2017/8416763
9.    Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines (Basel). 2018;5(3):93. doi:10.3390/medicines5030093
10.    Soni A, Femida P, Sharma P. In-vitro Cytotoxic Activity of Plant Saponin Extracts on Breast Cancer Cell-Line. Research Journal of Pharmacognosy and Phytochemistry. 2017;9(1):17-22. doi:10.5958/0975-4385.2017.00003.6
11.    Balunas MJ, Kinghorn AD. Drug discovery from medicinal plants. Life Sciences. 2005;78(5):431-441. doi:10.1016/j.lfs.2005.09.012
12.    Afanas’ev IB, Dorozhko AI, Brodskii AV, Kostyuk VA, Potapovitch AI. Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem Pharmacol. 1989;38(11):1763-1769. doi:10.1016/0006-2952(89)90410-3
13.    Yuan T, Wan C, González-Sarrías A, Kandhi V, Cech NB, Seeram NP. Phenolic Glycosides from Sugar Maple (Acer saccharum) Bark. J Nat Prod. 2011;74(11):2472-2476. doi:10.1021/np200678n
14.    Rayavarapu S, Yarla NS, Kadiri SK, et al. Synthesis of Saccharumoside-B analogue with potential of antiproliferative and pro-apoptotic activities. Sci Rep. 2017;7(1):8309. doi:10.1038/s41598-017-05832-w
15.    Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology. 1995;28(1):25-30. doi:10.1016/S0023-6438(95)80008-5
16.    V C, T T, K M, J N. Evaluation of In-vitro Antioxidant Activity of Ethanolic Extract of Ugli Fruit. Research Journal of Pharmacy and Technology. 2017;10(11):3826-3830. doi:10.5958/0974-360X.2017.00694.1
17.    McCord JM, Fridovich I. Superoxide Dismutase. Journal of Biological Chemistry. 1969;244(22):6049-6055. doi:10.1016/S0021-9258(18)63504-5
18.    Sheela S, Babu ND, Ilango K. Free Radical Scavenging Activity of Leaves of Memecylon edule Roxb. Research Journal of Pharmacognosy and Phytochemistry. 2009;1(2):109-112. Accessed December 1, 2021. http://rjpponline.org/AbstractView.aspx?PID=2009-1-2-5
19.    Johnson EI. The Quantitative Analysis of Drugs. by D. C. Garratt. Journal of Pharmacy and Pharmacology. 2011;16(11):772-772. doi:10.1111/j.2042-7158.1964.tb07408.x
20.    Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63. doi:10.1016/0022-1759(83)90303-4
21.    R C, B S, Babu MN. A Pharmacoeconomic Focus on Medicinal Plants with Anticancer Activity. Research Journal of Pharmacognosy and Phytochemistry. 2018;10(1):91-100. doi:10.5958/0975-4385.2018.00015.8
22.    Pawar SS, Rohane SH. Review on Discovery Studio: An important Tool for Molecular Docking. Asian Journal of Research in Chemistry. 2021;14(1):86-88. doi:10.5958/0974-4150.2021.00014.6
23.    Satpute UM, Rohane SH. Efficiency of Autodock: Insilico study of Pharmaceutical Drug Molecules. Asian Journal of Research in Chemistry. 2021;14(1):92-96. doi:10.5958/0974-4150.2021.00016.X
24.    Quiroga R, Villarreal MA. Vinardo: A Scoring Function Based on Autodock Vina Improves Scoring, Docking, and Virtual Screening. PLoS One. 2016;11(5):e0155183. doi:10.1371/journal.pone.0155183
25.    Wang R, Lai L, Wang S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. Journal of computer-aided molecular design. 2002;16(1):11-26.
26.    Hanasaki Y, Ogawa S, Fukui S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radical Biology and Medicine. 1994;16(6):845-850. doi:10.1016/0891-5849(94)90202-X
27.    Mardani-Ghahfarokhi A, Farhoosh R. Antioxidant activity and mechanism of inhibitory action of gentisic and α-resorcylic acids. Sci Rep. 2020;10(1):19487. doi:10.1038/s41598-020-76620-2
28.    Patil SD, Vinayak K, Balsubraniyan, Anwar S. Docking Studies and Synthesis of Novel Flavones Screened for Biological Activities like Anticancer and Antioxidant Activity. Asian Journal of Research in Chemistry. 2015;8(6):399-406. doi:10.5958/0974-4150.2015.00066.8
29.    Diaz MN, Frei B, Vita JA, Keaney JF. Antioxidants and Atherosclerotic Heart Disease. New England Journal of Medicine. 1997;337(6):408-416. doi:10.1056/NEJM199708073370607
30.    Deghrigue M, Dellai A, Akremi N, Le Morvan V, Robert J, Bouraoui A. Evaluation of antiproliferative and antioxidant activities of the organic extract and its polar fractions from the Mediterranean gorgonian Eunicella singularis. Environmental Toxicology and Pharmacology. 2013;36(2):339-346. doi:10.1016/j.etap.2013.04.014
31.    Bhatta S, Ratti C, Poubelle P, Stevanovic T. Nutrients, Antioxidant Capacity and Safety of Hot Water Extract from Sugar Maple (Acer saccharum M.) and Red Maple (Acer rubrum L.) Bark. Plant Foods for Human Nutrition. 2018;73. doi:10.1007/s11130-018-0656-3
32.    Miyata Y, Nakamoto H, Neckers L. The therapeutic target Hsp90 and cancer hallmarks. Curr Pharm Des. 2013;19(3):347-365. doi:10.2174/138161213804143725
33.    Zagouri F, Sergentanis TN, Chrysikos D, Papadimitriou CA, Dimopoulos MA, Psaltopoulou T. Hsp90 inhibitors in breast cancer: a systematic review. Breast. 2013;22(5):569-578. doi:10.1016/j.breast.2013.06.003
34.    Natural compounds as potential Hsp90 inhibitors for breast cancer-Pharmacophore guided molecular modelling studies - ScienceDirect. Accessed November 17, 2021. https://www.sciencedirect.com/science/article/pii/S1476927119302956
35.    Burstein HJ. The Distinctive Nature of HER2-Positive Breast Cancers. New England Journal of Medicine. 2005;353(16):1652-1654. doi:10.1056/NEJMp058197
36.    Iqbal N, Iqbal N. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Mol Biol Int. 2014;2014:852748. doi:10.1155/2014/852748
37.    Di Fiore PP, Pierce JH, Kraus MH, Segatto O, King CR, Aaronson SA. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science. 1987;237(4811):178-182. doi:10.1126/science.2885917
38.    Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell. 1988;54(1):105-115. doi:10.1016/0092-8674(88)90184-5
39.    Wang P, McInnes C, Zhu BT. Structural Characterization of the Binding Interactions of Various Endogenous Estrogen Metabolites with Human Estrogen Receptor α and β Subtypes: A Molecular Modeling Study. PLoS One. 2013;8(9):e74615. doi:10.1371/journal.pone.0074615
40.    Huang B, Omoto Y, Iwase H, et al. Differential expression of estrogen receptor α, β1, and β2 in lobular and ductal breast cancer. Proc Natl Acad Sci U S A. 2014;111(5):1933-1938. doi:10.1073/pnas.1323719111
41.    Yugandhar P, Kumar KK, Neeraja P, Savithramma N. Isolation, characterization and in silico docking studies of synergistic estrogen receptor a anticancer polyphenols from Syzygium alternifolium (Wt.) Walp. J Intercult Ethnopharmacol. 2017;6(3):296-310. doi:10.5455/jice.20170709031835
42.    Irby RB, Yeatman TJ. Role of Src expression and activation in human cancer. Oncogene. 2000;19(49):5636-5642. doi:10.1038/sj.onc.1203912
43.    González L, Agulló-Ortuño MT, García-Martínez JM, et al. Role of c-Src in Human MCF7 Breast Cancer Cell Tumorigenesis*. Journal of Biological Chemistry. 2006;281(30):20851-20864. doi:10.1074/jbc.M601570200
44.    Tou WI, Chen CYC. In Silico Investigation of Potential Src Kinase Ligands from Traditional Chinese Medicine. PLoS One. 2012;7(3):e33728. doi:10.1371/journal.pone.0033728
45.    Roskoski R. Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharmacological Research. 2015;94:9-25. doi:10.1016/j.phrs.2015.01.003
46.    Pushpalatha R, Selvamuthukumar S, Kilimozhi D. Comparative Insilico Docking Analysis of Curcumin and Resveratrol on Breast Cancer Proteins and their Synergistic Effect on MCF-7 Cell Line. Published October 9, 2017. Accessed November 21, 2021. https://fulltxt.org/article/273


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available