Author(s): S. Mallick, A. K. Mahapatra, P.N. Murthy, Ruchita Kumari Patra

Email(s): soudamini_rkl@yahoo.co.in

DOI: 10.52711/0974-360X.2023.00095   

Address: S. Mallick*, A. K. Mahapatra, P.N. Murthy, Ruchita Kumari Patra
Royal College of Pharmacy and Health Sciences, Andhapasara Road, Berhampur - 760002, Odisha, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 2,     Year - 2023


ABSTRACT:
The aim of this study was to make and characterize Glipizide solid dispersions utilizing a low viscosity grade of hydoxypropyl methyl cellulose (HPMCLV). The phase solubility character of Glipizide in presence of various concentrations of HPMCLV in 0.1N HCl was evaluated. Glipizide solubility increases as the concentration of HPMC in 0.1N HCl was increased. Gibbs free energy (?Gotr) values were all negative, indicating that drug solubilization occurs spontaneously. Solid dispersions of Glipizide with HPMCLV were prepared by using solvent evaporation method The physical properties of Glipizide with HPMCLV SDs were investigated using Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). Dissolution studies was also performed. Subsequently, bioavailability of pure Glipizide, solid dispersion and marketed product was performed. Glipizide dissolution rate was enhanced in SDs containing HPMC, and the rate increased as the concentration of HPMC in the SDs increase. After preparing SDs and a physical mixture with HPMC, the mean dissolving time (MDT) of Glipizide decreased significantly. FTIR spectroscopy tests revealed Glipizide's stability and the absence of a well-defined Glipizide-HPMCLV interaction. The amorphous condition of Glipizide in SDs of Glipizide with HPMCLV was revealed by DSC and XRD studies. When compared to pure drug and marketed product, solid dispersion of Glipizide with HPMCLV exhibited improved bioavailability.


Cite this article:
S. Mallick, A. K. Mahapatra, P.N. Murthy, Ruchita Kumari Patra. In vivo Evaluation of Solid dispersion of Glipizide with Low Viscosity Grade Hydroxypropyl Methylcellulose. Research Journal of Pharmacy and Technology 2023; 16(2):555-0. doi: 10.52711/0974-360X.2023.00095

Cite(Electronic):
S. Mallick, A. K. Mahapatra, P.N. Murthy, Ruchita Kumari Patra. In vivo Evaluation of Solid dispersion of Glipizide with Low Viscosity Grade Hydroxypropyl Methylcellulose. Research Journal of Pharmacy and Technology 2023; 16(2):555-0. doi: 10.52711/0974-360X.2023.00095   Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-2-14


REFERENCES:
1.    Chiou WL. Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci 1971; 60:1281-1302. doi.org/ 10.1002/jps.2600600902
2.    Swarbrick J. Encyclopedia of pharmaceutical technology 1990. vol. III. Marcel Dekker, New York.
3.    Shargel L. Applied Biopharmaceutics and Pharmacokinetics 1993; 2nd ed. Appleton & Lange, Norwalk, CT.
4.    Craig DQM. The mechanism of drug release from solid dispersions in water-soluble polymers. Int J Pharm 2002; 231:131-144. doi.org/ 10.1016/s0378-5173(01)00891-2
5.    Biswal S. Sahoo J. Murthy PN. Giradkar RP. Avari JG. Enhancement of dissolution rate of gliclazide using solid dispersions with polyethylene glycol 6000. AAPS PharmSciTech 2008; 9(2):563-570. doi.org/ 10.1208/s12249-008-9079-z
6.    Biswal S. Sahoo J. Murthy PN. Physicochemical properties of solid dispersions of gliclazide in polyvinyl pyrollidone K-90. AAPS PharmSciTech 2009; 10(2):329-334. doi.org/10.1208/s12249-009-9212-7
7.    Gupta R. Prajapati SK. Bhardwaj P. Chaurasia H. In-vivo evaluation of glipizide floating micropheres. Research J Pharm and Tech 2009; 2(3):474-476.
8.    Shivhare UD. Ramteke VI. Mathur VB. Bhusari KP. Enhancing the bioavailability of glipizide by solid dispersion. Research J Pharma Dosage Forms and Tech 2010; 2(4):307-311.
9.    Hajare AA. Shetty YT. Mali MN. Sarvagod SM. Characterization of melt (Fusion) solid dispersions of nifedipine. Research J Pharm and Tech 2008; 1(3):230-234.
10.    Sharma D. Soni M. Kumar S. Gupta GD. Solubility enhancement-eminent role in poorly soluble drugs. Research J Pharm and Tech 2009; 2(2):220-224.
11.    Mishra N. Srivastava S. Characterization and solubility enhancement of etoricoxib in solid dispersion systems using lipid carriers gelucire 44/14. Research J Pharm and Tech 2010; 3(2):578-582.
12.    Barde LN. Mulye SV. Roy AA et al. Development and in vitro evaluation of extended-release matrix tablet of metoprolol succinate. Research J Pharm and Tech 2010; 3(3):748-752.
13.    Kumar KV. Kumar NA. Varma PRP. Rani C et al. Formulation and in vitro characterization of valsartan solid dispersions. Research J Pharm and Tech 2009; 2 (3):502-506.
14.    Vakhariya RR. Kumbhar SM. Salunkhe PS et al. Dissolution rate enhancement of ramipril by solid dispersion technique. Asian J Pharm Res 2020; 10(1):08-12. doi.org/10.5958/2231-5691.2020.00002.7
15.    Manukonda K. Rama Rao N. Santhosh Aruna M. Lakshmi PJ. Solid dispersions-an approach to enhance the dissolution rate of clopidogrel bisulphate. Asian J Res Pharm Sci 2014; 4(4):165-168.
16.    Divya L. Latha KPV. Enhancement of solubility of raloxifene HCl by formulating immediate and controlled release solid dispersion. Asian J Pharm Tech 2015; 5(4):238-248.
17.    Trapani G. Franco M. Latrofa A. Pantaleo MR. Provenzano MR. Sanna E. Maciocco E. Liso G. Physicochemical characterization and in vivo properties of zolpidem in solid dispersions with polyethylene glycol 4000 and 6000. Int J Pharm 1999;184:121-130. doi.org/10.1016/s0378-5173(99)00112-x
18.    Damian F. Blaton N. Kinget R et al. Physical stability of solid dispersions of the antiviral agent UC-781 with PEG 6000,gelucire®44/14 and PVP K30. Int J Pharm 2002; 244:87-98. doi.org/10.1016/S0378-5173(02)00316-2
19.    Tantishaiyakul V. Kaewnopparat N. Ingkatawornwong S. Properties of solid dispersions of piroxicam in polyvinylpyrrolidone. Int J Pharm 1999; 181:143–151. doi.org/10.1016/s0378-5173(99)00070-8
20.    Yamada T. Saito N. Anraku M. Imai T. Otagiri M. Physicochemical characterization of a anew crystal form and improvements in the pharmaceutical properties of the poorly water-soluble antiosteoporosis drug 3,9-bis (N, N-dimethylcarbamoyloxy)- 5H-benzofuro[3,2-c] quinoline-6-one (KCA-098) by solid dispersion with hydroxypropylcellulose. Pharm Dev and Tech 2000; 5:443-454. doi.org/10.1081/PDT-100102028
21.    Kushida I. Ichikawa M. Asakawa N. Improvement of dissolution and oral absorption of ER-34122, a poorly water soluble dual 5-lipoxygenase/cyclooxygenase inhibitor with anti-inflammatory activity by preparing solid dispersion. J Pharm sci 2002; 91:258–266. doi.org/10.1002/jps.10020
22.    Tiwari G. Tiwari R. Srivastava B. Rai AK. Development and optimization of multi-unit solid dispersion systems of poorly water-soluble drug. Research J Pharm and Tech 2008; 1(4):444-449.
23.    Kumar KV. Arunkumar N. Varma PRP. Rani C. George N. Formulation and in vitro characterization of valsartan solid dispersions. Research J Pharm and Tech 2009; 2(3):502-506.
24.    Mishra N. Srivastava S. Characterization and solubility enhancement of etoricoxib in solid dispersion systems using lipid carriers gelucire 44/14. Research J Pharm and Tech 2010; 3(2):578-582.
25.    Kulthe VV. Chaudhari PD. Characterization of etoricoxib solid dispersions prepared by spray drying technique. Research J Pharm and Tech 2010; 3(4):1158-1166.
26.    Giri TK. Mishra S. Tripathi DK. Carriers used for the development of solid dispersion for poorly water-soluble drugs. Research J Pharm and Tech 2011; 4(3):356-366.
27.    Vasim SM. Thube R. Solubility enhancement of aceclofenac by hot melt solid dispersion technique. Research J Pharm and Tech 2011; 4(8):1307-1310.
28.    Jadhav YL. Parashar B. Ostwal PP. Jain MS. Solid dispersion: solubility enhancement for poorly water-soluble drug. Research J Pharm and Tech 2012; 5(2):190-197.
29.    Pushkarna N. Arora A. Aggarwal G. Arora S. Nagpal M. Binary solid dispersions of telmisartan using natural modified neem gum: Development and characterization. Research J Pharm and Tech 2019; 12(9):4387-4393. doi.org/10.5958/0974-360X.2019.00754.6
30.    Higuchi T. Connors K. Phase solubility techniques. Adv in Ana Chem. and Instrument 1965; 4:17–123.
31.    Arias MJ. Gines JM. Moyano JR. Rabasco AM. Dissolution properties and in vivo behavior of triamterene in solid dispersions with polyethylene glycols. Pharm Acta Helv 1996;71:229-235. doi.org/10.1016/S0031-6865(96)00017-9
32.    Stepensky D. Friedman M. Srour W. Raz I. Hoffmana A. Preclinical evaluation of pharmacokinetic–pharmacodynamic rationale for oral CR metformin formulation. J Cont Rel 2001;71:107–115. doi.org/10.1016/S0168-3659(00)00374-6
33.    Pepato MT. Keller EH. Baviera AM. Kettelhut IC. Vendarmini RC. Anti-diabetic activity of Bauhinia forficata decoction in streptozotocin-diabetic rats. J Ethnopharmacol 2002; 81:191–197. doi.org/10.1016/s0378-8741(02)00075-2
34.    Wagner SG. Fundamentals of Clinical Pharmacokinetics, first ed. Drug Intelligence Publications Inc., Hamilton, Illinois, 1975; pp.71.
35.    Shawn AM. Thomas DR. Tina PD. A compaction process to enhance dissolution of poorly water-soluble drugs using hydroxypropyl methylcellulose. Int J Pharm 2003; 250:3-11. doi.org/10.1016/s0378-5173(02)00293-4

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available