Author(s): Prashant Suresh Salunke, Sreemoy Kanti Das, Jyotsna Pandit Khedkar, Sandeep Poddar

Email(s): y.prashant03@gmail.com

DOI: 10.52711/0974-360X.2023.00094   

Address: Prashant Suresh Salunke1*, Sreemoy Kanti Das1, Jyotsna Pandit Khedkar1, Sandeep Poddar2
1Faculty of Pharmacy, Lincoln University College, Wisma Lincoln, 12-18, Jalan SS 6/12, 47301 Petaling Jaya, Selangor D. E., Malaysia.
2Deputy Vice Chancellor (Research and Innovation), Lincoln University College, Wisma Lincoln, 12-18, Jalan SS 6/12, 47301 Petaling Jaya, Selangor D. E., Malaysia.
*Corresponding Author

Published In:   Volume - 16,      Issue - 2,     Year - 2023


ABSTRACT:
Due to a variety of comorbidities, Patients with type 2 diabetes usually require a multifaceted approach to therapy. A large number of medications taken at the same time increase the risk of undesirable drug effects or drug interactions in the patient. It's vital to think about cytochrome P-450 (CYP) enzyme interactions while using a multifactorial pharmacotherapy approach. The cytochrome P450 enzymes CYP2C9 and CYP3A4 metabolize bosentan in the liver similarly, teneligliptin is metabolized by flavin-containing monooxygenase 3 (FMO3) and cytochrome P450 (CYP) 3A4. This study was conducted to investigate a possible pharmacokinetic interaction between bosentan and teneligliptin. Interaction of teneligliptin, the known dipeptidyl peptidase-4 inhibitors or gliptins anti diabetic drugs with bosentan, a pulmonary antihypertensive agent, in healthy and alloxan-induced diabetic rats, was tested. Blood samples were taken from rats at various intervals up to 24 hours and blood glucose levels were calculated. The parameters considered for the analysis of the effect on teneligliptin induced hypoglycemia were the onset of hypoglycemia (duration required to reduce blood glucose level by 15% - 20%), duration of hypoglycemia (duration of time in which more than 15 % -20 % decrease in blood glucose level is managed to maintained), and peak hypoglycemia. In both healthy albino rats and diabetic rats, a single dose of bosentan did not affect blood glucose levels. These results suggest that bosentan has no hypoglycemic effect, implying that the drug-drug interaction with teneligliptin is of the pharmacokinetic kind.


Cite this article:
Prashant Suresh Salunke, Sreemoy Kanti Das, Jyotsna Pandit Khedkar, Sandeep Poddar. Bosentan effect on Teneligliptin’s Antidiabetic effect in Animal Model. Research Journal of Pharmacy and Technology 2023; 16(2):550-4. doi: 10.52711/0974-360X.2023.00094

Cite(Electronic):
Prashant Suresh Salunke, Sreemoy Kanti Das, Jyotsna Pandit Khedkar, Sandeep Poddar. Bosentan effect on Teneligliptin’s Antidiabetic effect in Animal Model. Research Journal of Pharmacy and Technology 2023; 16(2):550-4. doi: 10.52711/0974-360X.2023.00094   Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-2-13


REFERENCES:
1.    Sheth H. Suresh DK. Hasan R. Influence of bosentan on antidiabetic effect of pioglitazone and nateglinide in experimental animals. J Pharmacol Toxicol. 2011;6:427-32. https://doi.org/10.3923/jpt.2011.427.432
2.    Nathan DM. Davidson MB. DeFronzo RA. Heine RJ. Henry RR. Pratley R. Zinman B. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes care. 2007; 1;30(3):753-9. https://doi.org/10.2337/dc07-9920
3.    Rehman A. Setter SM. Vue MA. Drug-induced glucose alterations Part 2: Drug-induced hyperglycemia. Diabetes Spectr 2011; 24:234-8. https://doi.org/10.2337/diaspect.24.4.234
4.    Hasnain H. Ali H. Zafar F. Akbar AS. Hameed K. Shareef H. et al. Drug-drug interaction; facts and comparisons with national and international bentch marks; a threat more than a challenge for patient safety in clinical and economic scenario. The Professional Medical Journal. 2017; 24:357-65.
5.    Martins IJ. Drug-drug interactions with relevance to drug induced mitochondrial toxicity and accelerated global chronic diseases. ECPT 2017;3:18-21.
6.    Clement S. Braithwaite SS. Magee MF. Ahmann A. Smith EP, Schafer RG. et al. Management of diabetes and hyperglycemia in hospitals. Diabetes Care 2004;27:553-91. https://doi.org/10.2337/diacare.27.2.553
7.    Tatro DS. Drug Interaction Facts 2004. 1st ed. New York; Facts and Comparisons; 2003.
8.    Cade WT. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Physical therapy. 2008; 88:1322-35. https://doi.org/10.2522/ptj.20080008
9.    Hammad MA. Mohamed Noor DA. Syed Sulaiman SA. Aziz NA. Elsobky Y. A prospective study of prevalence of uncontrolled glycaemia in type 2 diabetes mellitus outpatients, 2016 ACCP Virtual Poster Symposium. Pharmacotherapy 2016; 36:e83-138. https://doi.org/10.13140/RG.2.1.4848.0247/1
10.    Srinivas NR. Clinical drug-drug interactions of bosentan, a potent endothelial receptor antagonist, with various drugs: Physiological role of enzymes and transporters. Gen Physiol Biophys. 2016 ;35(3):243-58. https://doi.org/10.4149/gpb_2015050
11.    Mastan SK. Chaitanya G. Reddy KR. Kumar KE. An appraisal to the special sulphonylurea: gliclazide. Pharmacologyonline 2009; 1: 254–269.
12.    Schernthaner G. Gliclazide modified release: a critical review of pharmacodynamic, metabolic and vasoprotective effects. Metabolism 2003; 52: 29–34. https://doi.org/10.1016/S0026-0495(03)00215-4
13.    Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygenreceptor. Ann. Clin. Biochem.1969; 6:24-27. https://doi.org/10.1177/000456326900600108
14.    Sharma SP. Anjankar AP. Kale A. Comparison of glucose levels using glucometer and GOD-POD Method in diabetic patients. Int. J. Clin. Biochem. Res. 2017;4(1):6-10. https://doi.org/10.18231/2394-6377.2017.0002
15.    Ansar W. Habib SH. Role of Acute Phase Reactants: Study in Diabetic and Non Diabetic Patients Suffering from Sepsis in India. International Journal of Advancement in Life Sciences Research. 2020 1;3(2):40-9. https://doi.org/10.31632/ijalsr.20.v03i02.005
16.    Banerjee S. Goswami K. Bandyopadhyay A. Maity C. Oxidative Status and Insulin Resistance in Diabetic Retinopathy: Effect of Natural Antioxidants. International Journal of Advancement in Life Sciences Research. 2022 ;27;5(1):5-11. https://doi.org/10.31632/ijalsr.2022.v05i01.002
17.    Park JY. Kim KA. Kang MH. Kim SL. Shin JG. Effect of rifampin on the pharmacokinetics of rosiglitazone in healthy subjects. Clinical Pharmacology and Therapeutics. 2004;75(3):157-62. https://doi.org/10.1016/j.clpt.2003.10.003
18.    Wrishko RE. Dingemanse J. Yu A. Darstein C. Phillips DL. Mitchell MI. Pharmacokinetic interaction between tadalafil and bosentan in healthy male subjects. The Journal of Clinical Pharmacology. 2008 ;48(5):610-8. https://doi.org/10.1177/0091270008315315
19.    Rasheed N. Mohammad AS. Farheen S. Zubair S. Simultaneous Formulation Development, Evaluation and Estimation of Innovative Controlled Release Tablets of Bosentan Formulated with Varied Polymers. Asian Journal of Pharmaceutical Analysis. 2016;6(4):235-45. https://doi.org/10.5958/2231-5675.2016.00035.1
20.    Akiladevi D. Nappinnai M. Sudha T. A Study on the Effect of disintegrants and Processing Methods on the Physicochemical and In Vitro Release Characteristics of Immediate Release Tablets of Bosentan Monohydrate. Asian Journal of Research in Pharmaceutical Sciences. 2017;24;7(4):222-6.
21.    Saidulu. P. Masthanamma. SK. Kumari VA. New validated RP-HPLC method for the determination of bosentan in bulk and dosage form. Research J. Pharm. and Tech. 8(5): 2015; 549-553.
22.    Oruganti Sai Koushik. V. Himaja, P. Srinivasa Babu. Ramadoss Karthikeyan. Development and Validation of Novel RP-HPLC Method for Estimation of Bosentan in Pharmaceutical Dosage Forms. Research J. Pharm. and Tech.2015; 8(12):1653-1661. https//doi.org/ 10.5958/0974-360X.2015.00091.8
23.    Lingamaneni K. Mukthinuthalapati MA. Development and validation of a new stability indicating RP-UFLC method for the estimation of Bosentan. Research Journal of Pharmacy and Technology. 2021; 14(8):4445-1. https://doi.org/10.52711/0974-360X.2021.00772
24.    Mukthinuthalapati MA. Raghu Raj Naik. Sistla Mounica Pratyusha. Simultaneous spectrophotometric determination of compounds: Application to an anti-diabetic formulation of Teneligliptin and Metformin. Research J. Pharm. and Tech. 2020; 13(4): 1936-1940. https://doi.org/10.5958/0974-360X.2020.00349.2
25.    Biswas B. Kumar M. Sharma JB. Saini V. Bhatt S. Method Development and Validation for Estimation of Teneligliptin in Tablet Dosage Form by RP-HPLC. Research Journal of Pharmacy and Technology.2020;13(4):1774-8. https://doi.org/10.5958/0974-360X.2020.00320.0
26.    Annapurna MM. Naik RR. Pratyusha SM. Simultaneous spectrophotometric determination of compounds: Application to an anti-diabetic formulation of Teneligliptin and Metformin. Research Journal of Pharmacy and Technology. 2020;13(4):1938-42. https://doi.org/10.5958/0974-360X.2020.00349.2
27.    Bichala PK. Kumar KJ. Suthakaran R. Shankar C. Development and Validation of an Analytical Method for the Estimation of Metformin and Teneligliptin in its Bulk and Tablet Dosage Form by using RP-HPLC. Asian Journal of Pharmaceutical Analysis. 2020;10(1):11-4. https://doi.org/10.5958/2231-5675.2020.00003.4
28.    Parag A. Pathade. Vinod A. Bairagi. Yogesh S. Ahire, Bhaskar O. Aher. Development and Validation of Stability Indicating UV Spectrophotometric Method for Estimation of Teneligliptine in Bulk and Tablet Dosage Form. Asian J. Pharm. Ana. 2019; 9(3):128-132.
29.    John K. Davidson. Clinical diabetes mellitus:a problem-oriented approach.2009.Pg15


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available