Author(s): Dora Dayu Rahma Turista, Viol Dhea Kharisma, Arif Nur Muhammad Ansori, Karina Ahmedovna Kardanova, Islam Ruslanovich Aslanov6, Ibragim Muhadinovich Dotkulov, Azret Zamirovich Apshev, Amir Albertovich Dokshukin, Maksim Rebezov, Vikash Jakhmola, Md. Emdad Ullah, Rahadian Zainul

Email(s): rahadianzmsiphd@fmipa.unp.ac.id

DOI: 10.52711/0974-360X.2023.00907   

Address: Dora Dayu Rahma Turista1, Viol Dhea Kharisma2,3, Arif Nur Muhammad Ansori4,5, Karina Ahmedovna Kardanova6, Islam Ruslanovich Aslanov6, Ibragim Muhadinovich Dotkulov6, Azret Zamirovich Apshev6, Amir Albertovich Dokshukin6, Maksim Rebezov7,8, Vikash Jakhmola5, Md. Emdad Ullah9, Rahadian Zainul10,11*
1Department of Biology Education, Faculty of Teacher Training and Education, Mulawarman University, Samarinda, Indonesia.
2Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia.
3Division of Molecular Biology and Genetics, Generasi Biologi Indonesia Foundation, Gresik, Indonesia.
4Postgraduate School, Universitas Airlangga, Surabaya, Indonesia.
5Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
6Medical Faculty, Kabardino-Balkarian State University, Nalchik, Russian Federation.
7Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russian Fed

Published In:   Volume - 16,      Issue - 12,     Year - 2023


ABSTRACT:
SARS-CoV-2 has caused a prolonged COVID-19 pandemic since the end of December 2019 and is still ongoing now. Bioactive compounds can be used as drugs to treat infectious diseases. This study aims to determine C. alata as a drug candidate for COVID-19 through its inhibitory activity to Mpro SARS-CoV-2 in silico. Cassia alata bioactive compounds have the potential to be used as a candidate for anti-SARS-CoV-2 supported by the result of drug-likeness, ADMET, pharmacokinetics, binding affinity, and antiviral activity prediction. Further research needs to be carried out to make C. alata a drug for COVID-19.


Cite this article:
Dora Dayu Rahma Turista, Viol Dhea Kharisma, Arif Nur Muhammad Ansori, Karina Ahmedovna Kardanova, Islam Ruslanovich Aslanov6, Ibragim Muhadinovich Dotkulov, Azret Zamirovich Apshev, Amir Albertovich Dokshukin, Maksim Rebezov, Vikash Jakhmola, Md. Emdad Ullah, Rahadian Zainul. Antiviral Investigation of Cassia alata L. bioactive compounds for SARS-CoV-2 Mpro: In Silico approach. Research Journal of Pharmacy and Technology. 2023; 16(12):5610-6. doi: 10.52711/0974-360X.2023.00907

Cite(Electronic):
Dora Dayu Rahma Turista, Viol Dhea Kharisma, Arif Nur Muhammad Ansori, Karina Ahmedovna Kardanova, Islam Ruslanovich Aslanov6, Ibragim Muhadinovich Dotkulov, Azret Zamirovich Apshev, Amir Albertovich Dokshukin, Maksim Rebezov, Vikash Jakhmola, Md. Emdad Ullah, Rahadian Zainul. Antiviral Investigation of Cassia alata L. bioactive compounds for SARS-CoV-2 Mpro: In Silico approach. Research Journal of Pharmacy and Technology. 2023; 16(12):5610-6. doi: 10.52711/0974-360X.2023.00907   Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-12-8


REFERENCE:
1.    Hui DS, I Azhar E, Madani TA, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health — The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020;91:264-266. doi:10.1016/j.ijid.2020.01.009
2.    Turista DDR, Islamy A, Kharisma VD, Ansori ANM. Distribution of COVID-19 and phylogenetic tree construction of sars-CoV-2 in Indonesia. J Pure Appl Microbiol. 2020;14:1035-1042. doi:10.22207/JPAM.14.SPL1.42
3.    WHO. Coronavirus disease (COVID-19). World Heamth Organization. Published 2022. Accessed November 30, 2022. https://www.who.int/emergencies/diseases/novel-coronavirus-2019
4.    V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19(3):155-170. doi:10.1038/s41579-020-00468-6
5.    Wina Nurtias LY, Rahma Turista DD, Puspitasari E. Human immune response to SARS-CoV-2 infection. J Teknol Lab. 2020;9(1):29-40. doi:10.29238/teknolabjournal.v9i1.223
6.    Duan L, Zheng Q, Zhang H, Niu Y, Lou Y, Wang H. The SARS-CoV-2 Spike Glycoprotein Biosynthesis, Structure, Function, and Antigenicity: Implications for the Design of Spike-Based Vaccine Immunogens. Front Immunol. 2020;11:1-12. doi:10.3389/fimmu.2020.576622
7.    Padhi AK, Tripathi T. Targeted design of drug binding sites in the main protease of SARS-CoV-2 reveals potential signatures of adaptation. Biochem Biophys Res Commun. 2021; 555: 147-153. doi:10.1016/j.bbrc.2021.03.118
8.    Mengist HM, Dilnessa T, Jin T. Structural Basis of Potential Inhibitors Targeting SARS-CoV-2 Main Protease. Front Chem. 2021;9(March):1-19. doi:10.3389/fchem.2021.622898
9.    Citarella A, Scala A, Piperno A, Micale N. Sars-cov-2 mpro: A potential target for peptidomimetics and small-molecule inhibitors. Biomolecules. 2021;11(4). doi:10.3390/biom11040607
10.    Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418-423. doi:10.1002/jmv.25681
11.    Elkaeed EB, Youssef FS, Eissa IH, et al. Multi-Step in silico discovery of natural drugs against COVID-19 targeting Main Protease. Int J Mol Sci. 2022; 23(6912): 1-22. doi:10.3390/ijms23136912
12.    Parmar M, Thumar R, Patel B, Athar M, Jha PC, Patel D. Structural differences in 3C-like protease (Mpro) from SARS-CoV and SARS-CoV-2: molecular insights revealed by Molecular Dynamics Simulations. Struct Chem. 2022; (0123456789). doi:10.1007/s11224-022-02089-6
13.    Lathifah QA, Puspitasari E, DDR. T. Uji antifungi ketepeng cina (Cassia alata L.) terhadap Trichophyton rubrum dan Candida albicans. J Muhammadiyah Med Lab Technol. 2021; 4:1. doi:10.30651/jmlt.v4i1.7362
14.    Lathifah QA, Dayu D, Turista R, Puspitasari E. Daya Antibakteri Ketepeng Cina (Cassia alata L.) terhadap Staphylococcus aureus , Pseudomonas aerugenosa , dan Klebsiella pneumonia. J Anal Kesehat. 2021;10(1):29-34. doi:10.26630/jak.v10i1.2718
15.    Fatmawati S, Yuliana, Purnomo AS, Abu Bakar MF. Chemical constituents, usage and pharmacological activity of Cassia alata. Heliyon. 2020;6(7):e04396. doi:10.1016/j.heliyon.2020.e04396
16.    Tallei TE, Fatimawali, Yelnetty A, et al. An Analysis Based on Molecular Docking and Molecular Dynamics Simulation Study of Bromelain as Anti-SARS-CoV-2 Variants. Front Pharmacol. 2021;12(717757):1-18. doi:10.3389/fphar.2021.717757
17.    WHO. WHO Traditional Medicine Strategy 2014-2023. Vol 11.; 2013. doi:10.3390/biom11101457
18.    Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004; 1(4): 337-341. doi:10.1016/j.ddtec.2004.11.007
19.    Yang H, Lou C, Sun L, et al. AdmetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics. 2019;35(6):1067-1069. doi:10.1093/bioinformatics/bty707
20.    Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7: 1-13. doi:10.1038/srep42717
21.    Han Y, Zhang J, Hu CQ, Zhang X, Ma B, Zhang P. In silico ADME and toxicity prediction of ceftazidime and its impurities. Front Pharmacol. 2019; 10: 1-12. doi:10.3389/fphar.2019.00434
22.    Aini NS, Kharisma VD, Widyananda MH, et al. In Silico Screening of Bioactive Compounds from Syzygium cumini L. and Moringa oleifera L. Against SARS-CoV-2 via Tetra Inhibitors. Pharmacogn J. 2022;14(4):267-272. doi:10.5530/pj.2022.14.95
23.    Mawaddani N, Sutiyanti E, Widyananda MH, et al. In Silico Study of Entry Inhibitor from Moringa oleifera Bioactive Compounds against SARS-CoV-2 Infection. Pharmacogn J. 2022; 14(5): 565-574. doi:10.5530/pj.2022.14.137
24.    Patel CN, Jani SP, Prasanth Kumar S, Modi KM, Kumar Y. Computational investigation of natural compounds as potential main protease (Mpro) inhibitors for SARS-CoV-2 virus. Comput Biol Med. 2022; 151(106318): 1-11. doi:10.1016/j.compbiomed.2022.106318
25.    Klein K, Zanger UM. Pharmacogenomics of cytochrome P450 3A4: Recent progress toward the “missing heritability” problem. Front Genet. 2013; 4: 1-15. doi:10.3389/fgene.2013.00012
26.    Vijayakumar M, Janani B, Kannappan P, et al. In silico identification of potential inhibitors against main protease of SARS-CoV-2 6LU7 from Andrographis panniculata via molecular docking, binding energy calculations and molecular dynamics simulation studies. Saudi J Biol Sci. 2022; 29(1): 18-29. doi:10.1016/j.sjbs.2021.10.060
27.    Husen SA, Wahyuningsih SPA, Ansori ANM, Hayaza S, Susilo RJK, Winarni D, Punnapayak H, Darmanto W. Antioxidant Potency of Okra (Abelmoschus esculentus Moench) Pods Extract on SOD Level and Tissue Glucose Tolerance in Diabetic Mice. Res J Pharm Technol. 12(12): 5683. DOI: 10.5958/0974-360X.2019.00983.1
28.    Husen SA, Setyawan MF, Syadzha MF, Susilo RJK, Hayaza S, Ansori ANM, Alamsjah MA, Ilmi ZN, Wulandari PAC, Pudjiastuti P, Awang P, Winarni D. A Novel Therapeutic effects of Sargassum ilicifolium Alginate and Okra (Abelmoschus esculentus) Pods extracts on Open wound healing process in Diabetic Mice. Research J. Pharm. and Tech 2020; 13(6): 2764-2770. DOI: 10.5958/0974-360X.2020.00491.6
29.    Aini NS, Kharisma VD, Widyananda MH, et al. In Silico Screening of Bioactive Compounds from Garcinia mangostana L. Against SARS-CoV-2 via Tetra Inhibitors. Pharmacogn J. 2022; 14(5): 575-579. doi:10.5530/pj.2022.14.138
30.    Listiyani P, Kharisma VD, Ansori ANM, et al. In Silico Phytochemical Compounds Screening of Allium sativum Targeting the Mpro of SARS-CoV-2. Pharmacogn J. 2022; 14(3): 604-609. doi:10.5530/pj.2022.14.78
31.    Fadholly A, Ansori ANM, Utomo B. Anticancer Effect of Naringin on Human Colon Cancer (WiDr Cells): In Vitro Study. Research Journal of Pharmacy and Technology. 2022; 15(2): 885-888. DOI: 10.52711/0974-360X.2022.00148
32.    Tallei TE, Tumilaar SG, Niode NJ, et al. Potential of plant bioactive compounds as SARS-CoV-2 Main Protease (Mpro) and Spike (S) Glycoprotein inhibitors: A molecular docking study. Scientifica (Cairo). 2020; 2020. doi:10.1155/2020/6307457
33.    Hu Q, Xiong Y, Zhu GH, et al. The SARS-CoV-2 main protease (Mpro): Structure, function, and emerging therapies for COVID-19. MedComm. 2022; 3(3): 1-27. doi:10.1002/mco2.151
34.    Fadholly A, Ansori ANM, Sucipto TH. An overview of naringin: Potential anticancer compound of citrus fruits. Res J Pharm Technol. 2020; 13(11): 5613-5619. DOI: 10.5958/0974-360X.2020.00979.8
35.    Fan J, Fu A, Zhang L. Progress in molecular docking. Quant Biol. 2019; 7(2): 83-89. doi:10.1007/s40484-019-0172-y
36.    Ansori ANM, Kharisma VD, Solikhah TI. Medicinal properties of Muntingia calabura L.: A Review. Res J Pharm Technol. 2021; 14(8): 4509-2. DOI: 10.52711/0974-360X.2021.00784
37.    Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular Docking and Structure-Based Drug Design Strategies. 2015; 20. doi:10.3390/molecules200713384
38.    Torres PHM, Sodero ACR, Jofily P, Silva-Jr FP. Key topics in molecular docking for drug design. Int J Mol Sci. 2019; 20(18): 1-29. doi:10.3390/ijms20184574
39.    Luqman A, Kharisma VD, Ruiz RA, Götz F. In silico and in vitro study of Trace Amines (TA) and Dopamine (DOP) interaction with human alpha 1-adrenergic receptor and the bacterial adrenergic receptor QseC. Cell Physiol Biochem. 2020; 54(5): 888-898. doi:10.33594/000000276
40.    Fadholly A, Ansori ANM, Kharisma VD, Rahmahani J, Tacharina MR. Immunobioinformatics of Rabies Virus in Various Countries of Asia: Glycoprotein Gene. Res J Pharm Technol. 2021; 14(2): 883-886. DOI: 10.5958/0974-360X.2021.00157.8
41.    Ullrich S, Nitsche C. The SARS-CoV-2 main protease as drug target. Bioorg Med Chem Lett. 2020; 30(17): 127377. doi:10.1016/j.bmcl.2020.127377
42.    Kharisma VD, Kharisma SD, Ansori ANM, Kurniawan HP, Witaningrum AM, Fadholly A, Tacharina MR. Antiretroviral Effect Simulation from Black Tea (Camellia sinensis) via Dual Inhibitors Mechanism in HIV-1 and its Social Perspective in Indonesia. Res J Pharm Technol. 2021; 14(1): 455-460. DOI: 10.5958/0974-360X.2021.00083.4
43.    Husen SA, Ansori ANM, Hayaza S, Susilo RJK, Zuraidah AA, Winarni D, Punnapayak H, Darmanto W. Therapeutic Effect of Okra (Abelmoschus esculentus Moench) Pods Extract on Streptozotocin-Induced Type-2 Diabetic Mice. Res J Pharm Technol. 2019; 12(8): 3703-3708. DOI: 10.5958/0974-360X.2019.00633.4
44.    Proboningrat A, Kharisma VD, Ansori ANM, Rahmawati R, Fadholly A, Posa GAV, Sudjarwo SA, Rantam FA, Achmad AB. In silico Study of Natural inhibitors for Human papillomavirus-18 E6 protein. Res J Pharm Technol. 2022; 15(3): 1251-6. DOI: 10.52711/0974-360X.2022.00209
45.    Kharisma VD, Ansori ANM, Jakhmola V, Rizky WC, Widyananda MH, Probojati RT, Murtadlo AAA, Rebezov M, Scherbakov P, Burkov P, Matrosova Y, Romanov A, Sihombing MAEM, Antonius Y, Zainul R. Multi-strain human papillomavirus (HPV) vaccine innovation via computational study: A mini review. Res J Pharm Technol. 2022; 15(8): 3802-7. DOI: 10.52711/0974-360X.2022.00638.
46.    Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020; 582(7811): 289-293. doi:10.1038/s41586-020-2223-y

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available