Author(s): Susilo Susilo, Ratih Kusuma Wardhani

Email(s): susilo@uhamka.ac.id

DOI: 10.52711/0974-360X.2023.00970   

Address: Susilo Susilo*, Ratih Kusuma Wardhani
Department of Biology Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Prof. DR. Hamka, East Jakarta, Indonesia 13830.
*Corresponding Author

Published In:   Volume - 16,      Issue - 12,     Year - 2023


ABSTRACT:
Selaginella willdenowii (Desv.) Bakeris a terrestrial herb with a high source of antioxidants. However, the phytoconstituents of these plants have not been reported. Therefore, we explored the metabolite in the leaves, stems, and roots of S. willdenowii (Desv.) Baker investigated its bioactive compounds' potential. Analysis of the phytoconstituents of S. willdenowii (Desv.) Baker ethanol extract was performed with Gas Chromatography-Mass Spectrometry (GCMS). We identified 69 metabolites that appear to be 16 categories of compound classes. 2,6,10-Trimethyl, 14-Ethylene-14-Pentadecne, Stigmasterol, Hexadecanoic, and acid methyl ester are four compounds consistently present in each part of the S. willdenowii (Desv.) Baker. Known pharmacological properties of phytocompounds found can be used as anticancer drugs, antioxidants, anti-inflammatory, antitumor, and antimicrobial. The identified phytoconstituents provide the foundation for utilizing S. willdenowii (Desv.) Bakeris a future ethnomedical, nutraceutical, and phytopharmaceutical source.


Cite this article:
Susilo Susilo, Ratih Kusuma Wardhani. Phytoconstituents profiling of Selaginella willdenowii (Desv.) Baker and Pharmacological Potential. Research Journal of Pharmacy and Technology.2023; 16(12):5978-5. doi: 10.52711/0974-360X.2023.00970

Cite(Electronic):
Susilo Susilo, Ratih Kusuma Wardhani. Phytoconstituents profiling of Selaginella willdenowii (Desv.) Baker and Pharmacological Potential. Research Journal of Pharmacy and Technology.2023; 16(12):5978-5. doi: 10.52711/0974-360X.2023.00970   Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-12-71


REFERENCES:
1.    Zhou XM, Zhao J, Yang JJ, Péchon T,Zhang L, He XR, Zhang RB. Plastome structure, evolution, and phylogeny of Selaginella. Mol. Phylogenet. Evol. 2022; 169: 107410.doi: 10.1016/J.YMPEV.2022.107410
2.    Zhou XM, Zhang LB. A classification of Selaginella (Selaginellaceae) based on molecular (chloroplast and nuclear), macromorphological, and spore features. Taxon. 2015; 64: 1117–1140.doi: 10.12705/646.2
3.    Thamnarak W, Eurtivong C, Pollawatn R, Ruchirawat S, Thasana, N. Two new nor-lignans, siamensinols A and B, from Selaginella siamensis Hieron. and their biological activities. Nat. Prod. Res. 2021: 36(21): 5591-5599. doi: 10.1080/14786419.2021.2022664.
4.    Aziz Ir, Raharjeng PR, Susilo, Nasution J. Ethnobotany of traditional wedding: A comparison of plants used by Bugis, Palembang, Sundanese and Karo ethnic in Indonesia. J. Phys. Conf. Ser. 2019; 1175.doi: 10.1088/1742-6596/1175/1/012005
5.    Risnawati R, Meitiyani,Susilo. The effect of adding Kepok Banana peels (Musa paradisiaca) to powder media on the growth of white oyster mushrooms (Pleurotus ostreatus). IOP Conf. Ser. Earth Environ. Sci. 2021; 755.doi: 10.1088/1755-1315/755/1/012066
6.    Adame-González AB, Muñíz-DL ME, Valencia-AS. Comparative leaf morphology and anatomy of six Selaginella species (Selaginellaceae, subgen. Rupestrae) with notes on xerophytic adaptations. Flora. 2019; 260: 151482.doi: 10.1016/j.flora.2019.151482
7.    Jermy AC. Selaginellaceae. Pteridophytes and Gymnosperms. 1990; 39–45.doi: 10.1007/978-3-662-02604-5_11.
8.    Xu KP,Zou H, Li FS, Xiang HL, Zou ZX, Long HP, Li J, Luo YL, Li YJ, Tan GS. Two new selaginellin derivatives from Selaginella tamariscina (Beauv.) Spring. J Asian Nat Prod Res. 2011;13: 356–360.doi: 10.1080/10286020.2011.558840
9.    Demehin AA,Thamnarak W, Lamtha T, Chatwichien J, Eurtivong C, Choowongkomon K, Chainok K, Ruchirawat S. Thasana N. Siamenflavones A-C, three undescribed biflavonoids from Selaginella siamensis Hieron. and biflavonoids from spike mosses as EGFR inhibitor. Phytochemistry. 2022; 203: 113374.doi: 10.1016/j.phytochem.2022.113374
10.    Li G, Ma X, Jiang Y, Li W, Wang Y, Liu L, Sun C. Xiao S, Kuang J, Wang G. Aqueous two-phase extraction of polysaccharides from Selaginella doederleinii and their bioactivity study. Process Biochem. 2022; 118: 274–282.doi: 10.1016/j.procbio.2022.04.024
11.    Xie Y, Yao XC, Tan LH, Long HP, Xu PS, Li J, Tan GS. Trichocladabiflavone A, a chalcone-flavonone type biflavonoid from Selaginella trichoclada Alsto. Nat. Prod. Res.2022; 36: 1797–1802. doi: 10.1080/14786419.2020.1817920
12.    Akbar B, Susilo, Nissa RA, Ritonga RF, Lestari S, Astuti Y, Parwito. Antifertility Effect of the Ethanol Extract of Centella asiatica L. Urban Against the White Rat (Rattus norvegicus L.) in the Early Post-Implantation. J. Phys. Conf. Ser. 2018; 1114. doi: 10.1088/1742-6596/1114/1/012002
13.    Kunert O., Swamy RC., Kumar BR, Rao AVNA, Nandi OI, Schuehly W. Two Novel Spirostene Glycosides from Selaginella chrysocaulos and their Chemotaxonomic Significance. Natural Product Communications. 2015; 10(6). doi: 10.1177/1934578X1501000624
14.    Wei Q, Liu R. Flower colour and essential oil compositions, antibacterial activities inLagerstroemia indica L. Nat. Prod. Res. 2022; 36(8): 2145–2148. doi: 10.1080/14786419.2020.1843034
15.    Heng YW, Ban J J, Khoo K S, Sit NW. Biological activities and phytochemical content of the rhizome hairs of Cibotium barometz (Cibotiaceae). Ind. Crops Prod. 2020; 153(1): 112612.doi: 10.1016/j.indcrop.2020.112612
16.    Zou, Z. X. et al. Two new biflavonoids from Selaginella doederleinii. Phytochem. Lett.40, 126–129 (2020).
17.    Yang, J. W., Yang, S. J., Na, J. M., Hahn, H. G. and Cho, S. W. 3-(Naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride attenuates NLRP3 inflammasome-mediated signaling pathway in lipopolysaccharide-stimulated BV2 microglial cells. Biochem. Biophys. Res. Commun. 2018; 495: 151–156. doi: 10.1016/j.bbrc.2017.10.131
18.    Yao CP, Zou ZX, Zhang Y, Li J, Cheng F, Xu PS, Zhou G, Li XM, Xu KP. Tan GSet al. New adenine analogues and a pyrrole alkaloid from Selaginella delicatula. Nat. Prod. Res. 2019; 33: 1985–1991.doi: 10.1080/14786419.2018.1482892
19.    Bhattacharya, R. & Naitam, P. Green Anticancer Drugs-An Review. Res. J. Pharmacogn. Phytochem. 2019; 11(4): 231. doi: 10.5958/0975-4385.2019.00040.2
20.    Wong CF, Chai TT.Antioxidant properties of aqueous extracts of Selaginella willdenowii. Journal of Medicinal Plants Research. 2012; 6(7): 1289–1296.doi: 10.5897/JMPR11.1376
21.    Tsun-Thai Chai. Antioxidant properties of aqueous extracts of Selaginella willdenowii. J. Med. Plants Res. 2012; 6: 1289–1296.
22.    Rahmani, A., L.Endang Widiastuti1, Kanedi1, M. & Susanto1, G. N. Toxicity test of Selaginella willdenowiiextract on survival of common carp juvenile (Cyprinus sp.). 2014; 2: 139. doi: 10.23960/j-bekh.v2i1.2220
23.    Balachandar R, Karmegam N. Subbaiya R. Extraction, separation and characterization of bioactive compounds produced by streptomyces isolated from vermicast soil. Res. J. Pharm. Technol. 2018; 11(10): 4569–4574. doi: 10.5958/0974-360X.2018.00836.3
24.    Nabila N, Susilo, S. A Comparative Metabolite Analysis of Pandanus amaryllifoliusLeaves from Different Growth Stages using GC-MS and Their Biological. Eur. Chem. Bull. 2022; 11: 22–38.
25.    Tang GM, Shi YT, Gao W, Li MN, Li P, Yang H. Comparative Analysis of Volatile Constituents in Root Tuber and Rhizome of Curcuma longa L. Using Fingerprints and Chemometrics Approaches on Gas Chromatography–Mass Spectrometry. Molecules. 2022; 27(10): 3196. doi: 10.3390/molecules27103196.
26.    Thakur P, Thakur U, Kaushal P, Ankalgi AD, Kumar P, Kapoor A, Ashawat MS. A Review on GC-MS Hyphenated Technique. Asian J. Pharm. Anal. 2021; 11(4): 285–292.doi: 10.52711/2231-5675.2021.00049
27.    Reddy MY, Ramesh V, Reddy CK, Venugopal N, Saravanana G, Suryanarayana MV, Sunder BS. et al. The Quantitative Determination of Process Related Genotoxic Impurities in Esomeprazole Magnesium by GC-MS. Asian J. Pharm. Anal. 2011; 4(6): 898–901.
28.    Aravind R, Bindu AR, Bindu K, Alexeyena V. GC-Ms analysis of the bark essential oil of cinnamomum malabatrum (burman. f) blume. Res. J. Pharm. Technol. 2014; 7(7): 754–759.
29.    Priya S, Nethaji S, SindhujaB. GC-MS analysis of some bioactive constituents of diospyros Virginiana. Res. J. Pharm. Technol. 2014; 7(4): 429–432.
30.    Rajabudeen E, Ganthi A, Subramanian M. GC-MS Analysis of the Methanol Extract of Tephrosia villosa (L.) Pers. Asian J. Res. Chem. 2012; 5(11):1331–1334.
31.    Zahi MR, Liang H, Khan A, Yuan Q. Identification of Essential Oil Components in Chinese Endemic Plant Achnatherum inebrians. Asian J. Res. Chem. 2014; 7(6):576–579.
32.    Jose BE, Selvam PP. Identification of Phytochemical Constituents in the Leaf Extracts of Azima tetracantha Lam using Gas Chromatography-Mass Spectrometry (GC-MS) analysis and Antioxidant Activity. Asian J. Res. Chem. 2018; 11(4):857. doi: 10.5958/2321-5836.2019.00004.1
33.    Krishnaveni M, Kumari KG, Banu, CR, Kalaivani M. Phytochemical analysis of Terminalia catappa stem using GC-MS/MS. Res. J. Pharm. Technol. 2015; 8(9):1281–1283. doi: 10.5958/0974-360X.2015.00232.2
34.    Pandian RS, Noora AT. GC-MS analysis of phytochemical compounds present in the leaves of Citrus medica. L. Res. J. Pharm. Technol. 2019; 12(4):1823–1826. doi: 10.5958/0974-360X.2019.00304.4
35.    Saxena M, Mir AH, Sharma M, Malla MY, Qureshi S, Mir MI, Chaturvedi Y. Phytochemical screening and in-vitro antioxidant activity isolated bioactive compounds from Tridax procumbens Linn. Pakistan J. Biol. Sci.  PJBS. 2013;16(24):1971–1977. doi: 10.3923/pjbs.2013.1971.1977
36.    Krishnamoorthy K, Subramaniam P.  Phytochemical Profiling of Leaf, Stem, and Tuber Parts of Solena amplexicaulis (Lam.) Gandhi Using GC-MS. Int. Sch. Res. Not. 2014; 567409.doi: 10.1155/2014/567409
37.    Koehler K, Thevis M, Schaenzer W. Meta-analysis: Effects of glycerol administration on plasma volume, haemoglobin, and haematocrit. Drug Test Anal. 2013; 5(11):896–899.
38.    Alzurfi SKL, Abdali SA, Aattaby EAS, Rabeea MAA, Al-Haidarey MJS. Identification of lipid compounds in the plant of Ceratophyllum demersum using two different solvents. Mater. Today Proc. 2022; 60(3): 1596–1605. doi: 10.1016/j.matpr.2021.12.127
39.    Rukshana MS, Dos A, Pushpa K. Phytochemical Screening and GC-MS Analysis of Leaf Extract of Pergularia daemia (Forssk) Chiov. Asian J. Plant Sci. Res. 2017; 7(1): 9-15.
40.    Alzurfi SKL, Abdali SA, Aattaby EAS, Rabeea MAA, Al-Haidarey MJS. Identification of lipid compounds in the plant of Ceratophyllum demersum using two different solvents. 2022; 60(3): 1596–1605. doi:10.1016/j.matpr.2021.12.127.
41.    Mangrolia U,  Osborne WJ. Staphylococcus xylosus VITURAJ10: Pyrrolo [1,2α] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) (PPDHMP) producing, potential probiotic strain with antibacterial and anticancer activity. Microb. Pathog. 2020; 147: 104259.doi: 10.1016/j.micpath.2020.104259
42.    Abdulrahman I, Jamal MT, Pugazhendi A, Dhavamani J, Satheesh S. Antibiofilm activity of secondary metabolites from bacterial endophytes of Red Sea soft corals. Int. Biodeterior. Biodegradation. 2022; 173: 105462.doi: 10.1016/j.ibiod.2022.105462
43.    Prabhadevi V, Sahaya SS, Johnson M, Venkatramani B, Janakiraman N. Phytochemical studies on Allamanda cathartica L. using GC–MS. Asian Pac. J. Trop. Biomed. 2012; 2(2): S550–S554. doi: 10.1016/S2221-1691(12)60272-X
44.    Agustikawati N, Andayani Y, Suhendra D. Antioxidant Activity Test and Phytochemical Screening of Pakoasi and Kluwih Leaf Extracts as Natural Antioxidant Sources. J. Penelit. Pendidik. IPA. (2017; 3(2): 60-68.doi: 10.29303/jppipa.v3i2.93
45.    Ahmad I, Ahmed S, Akkol EK,  Rao H, Shahzad MN, Shaukat U, Basit A, Fatima M. GC–MS profiling, phytochemical and biological investigation of aerial parts of Leucophyllum frutescens (Berl.) I.M. Johnst. (Cenizo). South African J. Bot. 2022; 148: 200–209.doi: 10.1016/j.sajb.2022.04.038
46.    Elaiyaraja A, Chandramohan G. Comparative phytochemical profile of Indoneesiella echioides (L.) Nees leaves using GC-MS. J. Pharmacogn. Phytochem. 2016; 5(6): 158-171.
47.    Ali H, Yesmin R, Satter MA, Habib R, Yeasmin T. Antioxidant and antineoplastic activities of methanolic extract of Kaempferia galanga Linn. Rhizome against Ehr. J. King Saud Univ. - Sci. 2018; 30(3): 386–392.doi: 10.1016/j.jksus.2017.05.009
48.    Carrillo C, Cavia DM, Alonso-Torre SR. Antitumor effect of oleic acid; mechanisms of action. A review. Nutr Hosp. 2012; 27: 1860–1865. doi: 10.3305/nh.2012.27.6.6010
49.    Priore, P. et al. Oleic acid and hydroxytyrosol inhibit cholesterol and fatty acid synthesis in C6 glioma cells. Oxid. Med. Cell. Longev. 2017; 29435099. doi: 10.1155/2017/9076052
50.    Lattibeaudiere KG, Alexander-Lindo RL. Oleic Acid and Succinic Acid Synergistically Mitigate Symptoms of Type 2 Diabetes in Streptozotocin-Induced Diabetic Rats. Int. J. Endocrinol. 2022; 2022: 8744964. doi: 10.1155/2022/8744964
51.    Jie F, Yang X, Yang B, Liu Y, Wu L, Lu B. Stigmasterol attenuates inflammatory response of microglia via NF-κB and NLRP3 signaling by AMPK activation. Biomed. Pharmacother. 2022; 153:113317. doi: 10.1016/j.biopha.2022.113317
52.    Khan MA, Sarwar AHMG, Rahat R, Ahmed RS, Umar, S. Stigmasterol protects rats from collagen induced arthritis by inhibiting proinflammatory cytokines. Int. Immunopharmacol. 2020; 85: 106642. doi: 10.1016/j.intimp.2020.106642
53.    Drouillat B, Wright K, Marrot J, Couty F. Practical preparation of enantiopure 2-methyl-azetidine-2-carboxylic acid; a γ-turn promoter. Tetrahedron: Asymmetry. 2012; 23(9): 690–696.doi: 10.1016/j.tetasy.2012.05.006
54.    Kolar MJ, Konduri S, Chang T, Wang H, McNerlin C, Ohlsson L, Härröd M.et al. Linoleic acid esters of hydroxy linoleic acids are anti-inflammatory lipids found in plants and mammals. J. Biol. Chem. 2019; 294(27): 10698-10707. doi: 10.1074/jbc.RA118.006956
55.    Simopoulos AP. Essential fatty acids in health and chronic disease. Am. J. Clin. Nutr. 1999 Sep; 70(3 Suppl):560S-569S. doi: 10.1093/ajcn/70.3.560s
56.    Dos Reis CM, da Rosa BV, da Rosa GP, do Carmo G, Morandini LMB, Ugalde GA, Kuhn KRet al. Antifungal and antibacterial activity of extracts produced from Diaporthe schini. J. Biotechnol. 2019; 294: 30-37. doi: 10.1016/j.jbiotec.2019.01.022
57.    Montalvo G, Campos S, Arenas M, Barreto A, Escalante K, Cuzon G, Gaxiola G.. Immune gene expression and antioxidant response to vitamin E enriched diets for males Litopenaeus vannamei breeder (Boone, 1931). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2022; 268:111187. doi: 10.1016/j.cbpa.2022.111187.
58.    Sudirman T, Hatta M, Prihantono P, Bukhari A, Tedjasaputra TR, Lie H. Vitamin E administration as preventive measures for peritoneal/intra-abdominal adhesions: A systematic review and meta-analysis. Ann. Med. Surg. 2022; 80: 104225.doi: 10.1016/j.amsu.2022.104225
59.    Zahid M, Arif, M, Rahman MA, Singh K, Mujahid M. Solvent Extraction and Gas Chromatography–Mass Spectrometry Analysis of Annona squamosa L. Seeds for Determination of Bioactives, Fatty Acid/Fatty Oil Composition, and Antioxidant Activity. J Diet Suppl. 2018; 15(5):613-623. doi: 10.1080/19390211.2017.1366388.
60.    Tan DC, Idris KI, Kassim NK, Lim PC, Ismail IS, Hamid M, Ng RC. Comparative study of the antidiabetic potential of Paederia foetida twig extracts and compounds from two different locations in Malaysia. Pharm Biol. 2019; 57(1):345-354. doi: 10.1080/13880209.2019.1610462
61.    Fernando IPS, Sanjeewa KKA, Ann YS, Ko CI, Lee SH, Lee WW, Jeon YJ. Apoptotic and antiproliferative effects of Stigmast-5-en-3-ol from Dendronephthya gigantea on human leukemia HL-60 and human breast cancer MCF-7 cells. Toxicol In Vitro. 2018; 52: 297-305. doi: 10.1016/j.tiv.2018.07.007
62.    Iyer D, Patil UK. Efficacy of Stigmast–5–en–3β–ol Isolated from Salvadora persica L. as Antihyperlipidemic and Anti–tumor agent: Evidence from animal studies. Asian Pacific J. Trop. Dis. 2012; 2(2): S849–S855.doi: 10.1016/S2222-1808(12)60278-3
63.    Yaglioglu AS, Yaglioglu MS, Tosyalıoglu N, Adem S, Demirtas I. Chemical profiling, in vitro biological activities and Pearson correlation between chemical profiling and anticancer activities of four Abies species from Turkey. South African J. Bot. Chem Biodivers. 2023; 20(3): e202201142. doi: 10.1002/cbdv.202201142.
64.    Harada H, Yamashita U, Kurihara H, Fukushi E, Kawabata J, Kamei Y. Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Res. 2002 Sep-Oct; 22(5):2587-90.
65.    Okokon JE, Etuk IC, Thomas PS, Drijfhout FP, Claridge TDW. In vivo antihyperglycaemic and antihyperlipidemic activities and chemical constituents of Solanum anomalum. Biomed Pharmacother. 2022; 151: 113-153. doi: 10.1016/j.biopha.2022.113153
66.    Wu YQ,Wang, Xin Y, Huang SJ,  Wang GB, Xu LA.. Exogenous GbHMGS1 Overexpression Improves the Contents of Three Terpenoids in Transgenic Populus. Forests. 2021; 12(5): 1–14. https://doi.org/10.3390/f12050595
67.    Mekinić IG, Čagalj M, Tabanelli G, Montanari C, Barbieri F, Skroza D, Šimat V. Seasonal changes in essential oil constituents of cystoseira compressa: First report. Molecules. 2021; 26(21): 6649. doi: 10.3390/molecules26216649
68.    Lee W, Woo ER, Lee DG. Phytol has antibacterial property by inducing oxidative stress response in Pseudomonas aeruginosa. Free Radic Res. 2016; 50(12): 1309-1318. doi: 10.1080/10715762.2016.1241395
69.    Weremczuk-Jeżyna, I, Hnatuszko-Konka K, Lebelt L, Grzegorczyk-Karolak I. The protective function and modification of secondary metabolite accumulation in response to light stress in dracocephalum forrestii shoots. Int J Mol Sci. 2021; 22(15): 7965. doi: 10.3390/ijms22157965.
70.    Aboobucker SI, Suza WP. Why do plants convert sitosterol to stigmasterol? Front. Plant Sci. 2019; 10: 354. doi: 10.3389/fpls.2019.00354.
71.    Tang C, Wan Z, Chen Y, Tang Y, Fan W, Cao Y, Song M,Qin J, Xiao H, Guo S, Tang Z. Structure and Properties of Organogels Prepared from Rapeseed Oil with Stigmasterol. Foods. 2022; 11(7): 939. doi: 10.3390/foods11070939
72.    Navarro A, De las Heras B, Villar A. Anti-inflammatory and immunomodulating properties of a sterol fraction from Sideritis foetens CLEM. Biol Pharm Bull. 2001; 24(5): 470-3. doi: 10.1248/bpb.24.470
73.    Wang J, Huang M, Yang J, Ma X, Zheng S, Deng S, Huang Y, Yang X, Zhao P. Anti-diabetic activity of stigmasterol from soybean oil by targeting the GLUT4 glucose transporter. Food Nutr Res. 2017; 61(1): 1364117. doi: 10.1080/16546628.2017.1364117.
74.    Prasad M, Jayaraman S, Eladl MA, El-Sherbiny M, Abdelrahman MME, Veeraraghavan VP, Vengadassalapathy S,  UmapathyVR, Hussain SFJ, Krishnamoorthy K, Sekar D, Palanisamy CP, Mohan SK, Rajagopal P. A Comprehensive Review on Therapeutic Perspectives of Phytosterols in Insulin Resistance: A Mechanistic Approach. Molecules. 2022; 27(5): 1595. doi: 10.3390/molecules27051595.
75.    Gao Z, Maloney DJ, Dedkova LM, Hecht SM. Inhibitors of DNA polymerase β: Activity and mechanism. Bioorg Med Chem. 2008; 16(8): 4331-40. doi: 10.1016/j.bmc.2008.02.071.
76.    Gohil N, Bhattacharjee G, Khambhati K, Braddick D,Singh V. Engineering strategies in microorganisms for the enhanced production of squalene: Advances, challenges and opportunities. Front. Bioeng. Biotechnol. 2019; 7: 1–24. doi: 10.3389/fbioe.2019.00050
77.    Peng W, Li D, Zhang M, Ge S, Mo B, Shasha Li S, Ohkoshi M. Characteristics of antibacterial molecular activities in poplar wood extractives. Saudi J. Biol. Sci. 2017; 24(2): 399–404. doi: 10.1016/j.sjbs.2015.10.026
78.    Lubna Azmi L, Gupta SS, Shukla I, Kant P, Sidhu OP, Rao CV. Effect of squalene in surgically induced gastro-oesophageal reflux disease on rats. Res. J. Pharmacol. Pharmacodyn. 2017; 9(1): 1-9. doi: 10.5958/2321-5836.2017.00001.5
79.    Chae GE, Kim DW, Jin HE. Development of Squalene-Based Oil-in-Water Emulsion Adjuvants Using a Self-Emulsifying Drug Delivery System for Enhanced Antigen-Specific Antibody Titers. Int J Nanomedicine. 2022; 17: 6221-6231. doi: 10.2147/IJN.S379950
80.    Pu ZH, Zhang YQ, Yin ZQ, Xu J, Jia RY, Lu Y, Yang F. Antibacterial activity of 9-octadecanoic acid-hexadecanoic acid-tetrahydrofuran-3,4-diyl ester from neem oil. Agric. Sci. China. 2010; 9(8): 1236–1240.doi: 10.1016/S1671-2927(09)60212-1

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available