Author(s): Naser Zaeri

Email(s): n.zaeri@aou.edu.kw

DOI: 10.52711/0974-360X.2023.00872   

Address: Naser Zaeri*
Faculty of Computer Studies, Arab Open University, P.O. Box 830 Ardiya 92400, Kuwait
*Corresponding Author

Published In:   Volume - 16,      Issue - 11,     Year - 2023


ABSTRACT:
Researchers and scientists can transform interconnected data into valuable knowledge using computational-based models that can assist in disease diagnosis, inspection, and virus containment thanks to recent developments in the fields of artificial intelligence and machine learning. In this paper, we present a comprehensive analysis of how artificial intelligence and machine learning can contribute in the delivery of effective remedies and the fight against the COVID-19 pandemic, particularly in disease treatment and drug discovery. During the pandemic period, a large number of noteworthy studies were conducted in this direction by numerous academic and research communities from many fields. We explore the theoretical developments and practical applications of artificial intelligence algorithms and machine learning techniques that suggest potential solutions for accelerating the discovery of new drugs as well as repurposing existing ones, not only for COVID-19 but also for other related mutations and future pandemics, which unfortunately are highly predicted.


Cite this article:
Naser Zaeri. Drug discovery for COVID-19 and related mutations using artificial intelligence. Research Journal of Pharmacy and Technology. 2023; 16(11):5384-1. doi: 10.52711/0974-360X.2023.00872

Cite(Electronic):
Naser Zaeri. Drug discovery for COVID-19 and related mutations using artificial intelligence. Research Journal of Pharmacy and Technology. 2023; 16(11):5384-1. doi: 10.52711/0974-360X.2023.00872   Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-11-66


REFERENCES:
1.    D. P. Fan et al. Inf-Net: Automatic COVID-19 Lung Infection Segmentation From CT Images. IEEE Transactions on Medical Imaging. 2020; 39(8): 2626-2637doi: 10.1109/TMI.2020.2996645
2.    R. M. Balajee, K. Venkatesh. A Survey on Machine Learning Algorithms and finding the best out there for the considered seven Medical Data Sets Scenario. Research J. Pharm. and Tech. 2019; 12(6):3059-3062.
3.    Manisha Rokade, Pradnya Khandagale. Coronavirus Disease: A Review of a New Threat to Public Health. Asian J. Pharm. Res. 2020; 10(3):241-244.
4.    Ahmad Alimadadi, Sachin Aryal, Ishan Manandhar, X Patricia B. Munroe, Bina Joe, and X Xi Cheng. AI and Machine Learning for Understanding Biological Processes - Artificial intelligence and machine learning to fight COVID-19. Physiol Genomics. 2020;  52: 200–202 doi:10.1152/physiolgenomics.00029.2020.
5.    Browning, L., Colling, R., Rakha, E., Rajpoot, N., Rittscher, J., James, J. A., and Verrill, C. Digital pathology and artificial intelligence will be key to supporting clinical and academic cellular pathology through COVID-19 and future crises: the PathLAKE consortium perspective. Journal of Clinical Pathology. 2021;  74(7): 443-447.
6.    K. Nalini Devi, Juliana Shanthi Rosy. ECMO therapy for COVID-19. Asian J. Nursing Education and Research. 2021; 11(2): 299-301.
7.    Yamuna M, Elakkiya A. Mathematical Models in Drug Discovery, Development and Treatment of Various Diseases – A Case Study. Research J. Pharm. and Tech.  2017; 10(12): 4397-4401.
8.    Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., and Wang, C. Machine learning and deep learning methods for cybersecurity. IEEE ACCESS. 2018;  6: 35365-35381.
9.    Anish Chittora, Mary Mekala A. Discovery of Drug and Medicine Using Data Mining Techniques. Research J. Pharm. and Tech. 2017; 10(12): 4147-4151.
10.    Johnson, K. B., Wei, W. Q., Weeraratne, D., Frisse, M. E., Misulis, K., Rhee, K. and Snowdon, J. L. Precision medicine, AI, and the future of personalized health care. Clinical and Translational Science. 2021; 14(1): 86-93.
11.    Rajesh Kumar, Abdullah Aman Khan, Sinmin Zhang, WenYong Wang, Yousif Abuidris, Waqas Amin, and Jay Kumar, “Blockchain-Federated-Learning and Deep Learning Models for COVID-19 detection using CT Imaging.  Journal of Latex Class Files. 2020; 14(8).
12.    Paresh A. Patil, Ritik. S. Jain. Theoretical Study and treatment of Novel COVID-19. Res. J. Pharmacology and Pharmacodynamics. 2020; 12(2): 71-72.
13.    Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020; 382(8): 727–33
14.    Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018; 23(2):130–7
15.    Su, Z., Bentley, B., & Shi, F. (2020). Articial Intelligence-based Disease Surveillance Amid COVID-19 and Beyond. A Systematic Review Protocol. 1–15. https://doi.org/10.21203/rs.3.rs-74191/v1.
16.    Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020. https://doi.org/10.1038/s41586-020-2012-7
17.    Song Z, Xu Y, Bao L, Zhang L, Yu P, Qu Y, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses. 2019; 11(1): E59. https://doi.org/10.3390/v11010059
18.    Yan-Rong Guo1, Qing-Dong Cao, Zhong-Si Hong, Yuan-Yang Tan, Shou-Deng Chen, Hong-Jun Jin, Kai-Sen Tan, De-Yun Wang and Yan Yan. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Military Medical Research. 2020; 7:11, https://doi.org/10.1186/s40779-020-00240-0
19.    Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020. https://doi.org/10.1016/j.chom.2020.02.001
20.    Angeletti S, Benvenuto D, Bianchi M, Giovanetti M, Pascarella S, Ciccozzi M. COVID-2019: the role of the nsp2 and nsp3 in its pathogenesis. J Med Virol. 2020. https://doi.org/10.1002/jmv.25719
21.    Zhang L, Shen FM, Chen F, Lin Z. Origin and evolution of the 2019 novel coronavirus. Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa112
22.    Tang X, Wu C, Li X, Song Y, Yao X, Wu X, et al. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev. 2020. https://doi.org/10.1093/nsr/nwaa036
23.    A. Panday, ``Virus outbreak drives down automobile sales in March,'' Livemint, Apr. 2020. [Online]. Available: https://www.livemint.com/companies/news/automakers-hit-hard-bycovid-19%-march-sales-decline-over-50-11585749547879.html
24.    A. Panday, ``Amid Covid-19 crisis, commercial vehicle sales crash 89% in March,'' Livemint, Apr. 2020. [Online]. Available: https://www.livemint.com/companies/news/amid-covid-19-crisiscommercial%-vehicle-sales-crash-89-in-march-11585756974053.html
25.    Thanh Thi Nguyen, Pubudu N. Pathirana, Thin Nguyen, Quoc Viet Hung Nguyen, Asim Bhatti, Dinh C. Nguyen, Dung Tien Nguyen, Ngoc Duy Nguyen, Douglas Creighton, and Mohamed Abdelrazek, “Genomic Mutations and Changes in Protein Secondary Structure and Solvent Accessibility of SARS-CoV-2 (COVID-19 Virus),” bioRxiv preprint doi: https://doi.org/10.1101/2020.07.10.171769; 2021
26.    Centers for Disease Control and Prevention. (2022, Feb 1). Omicron Variant: What You Need to Know. https://www.cdc.gov/coronavirus/2019-ncov/variants/omicron-variant.html
27.    Amilpur, S., & Bhukya, R. (2022). Predicting novel drug candidates against Covid-19 using generative deep neural networks. Journal of Molecular Graphics and Modelling. 2022; 110: 108045.
28.    J.-L. Reymond, L. Ruddigkeit, L. Blum, R. van Deursen, The enumeration of chemical space, Wiley Interdiscipl. Rev.: Comput. Mol. Sci. 2 (5) (2012) 717–733.
29.    Hyungro Lee et al., “Scalable HPC & AI Infrastructure for COVID-19 Therapeutics,” arXiv:2010.10517v1 [cs.DC] 20 Oct 2020
30.    Randhawa, G. S., Soltysiak, M. P., El Roz, H., de Souza, C. P., Hill, K. A., and Kari, L. Machine learning using intrinsic genomic signatures for rapid classification of novel pathogens: COVID-19 case study. bioRxiv, doi: https://doi.org/10.1101/2020.02.03.932350
31.    Nguyen, T., Khosravi, A., Creighton, D., and Nahavandi, S. Multi-output interval type-2 fuzzy logic system for protein secondary structure prediction. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. 2015; 23(5): 735-760
32.    Araghi, S., and Nguyen, T. T. A hybrid supervised approach to human population identification using genomics data. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2019. doi: 10.1109/TCBB.2019.2919501
33.    P. Li, X. Jiang and H. Shatkay. Figure and caption extraction from biomedical documents. Bioinformatics. 2019; 35: 4381-4388.
34.    N. Siegel, N. Lourie, R. Power and W. Ammar, "Extracting scientific figures with distantly supervised neural networks", Proc. 18th ACM/IEEE Joint Conf. Digit. Libraries, pp. 223-232, 2018
35.    D. C. Comeau, C.-H. Wei, R. I. Doğan and Z. Lu. PMC text mining subset in BioC: About three million full-text articles and growing. Bioinformatics. 2019;  35: 3533-3535
36.    Kotta Kranthi Kumar. Importance and Applications of Artificial Intelligence (Metastorm Software) in Pharmaceutical Process Life-Cycle. Res. J. Pharma. Dosage Forms and Tech. 2019; 11(2): 116-120.
37.    Mohammad (Behdad) Jamshidi et al. Artificial Intelligence and COVID-19: Deep Learning Approaches for Diagnosis and Treatment,” IEEE Special Section On Emerging Deep Learning Theories And Methods For Biomedical Engineering.  June 24, 2020.
38.    N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu, and P. Niu. China novel coronavirus investigating and research team. A novel coronavirus from patients with pneumonia in China, 2019. New England J. Med. 2020; 382(8): 727733
39.    Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, et al. Improved Protein Structure Prediction Using Potentials from Deep Learning. Nature. 2020; 577(7792): 706-710. doi:10.1038/s41586-019-1923-7
40.    Segler MH, Preuss M, Waller MP. Planning Chemical Syntheses with Deep Neural Networks and Symbolic AI. Nature. 2018; 555(7698): 604-610.
41.    Fauqueur J, Thillaisundaram A, Togia T. Constructing Large Scale Biomedical Knowledge Bases from Scratch with Rapid Annotation of Interpretable Patterns. In: Proceedings of the 18th BioNLP Workshop and Shared Task.  2019: 142-151
42.    Ge Y, Tian T, Huang S, Wan F, Li J, Li S, et al. A Data-Driven Drug Repositioning Framework Discovered a Potential Therapeutic Agent Targeting COVID-19. bioRxiv preprint bioRxiv:20200311986836. 2020
43.    Hu F, Jiang J, Yin P. Prediction of Potential Commercially Inhibitors against SARS-CoV-2 by Multi-Task Deep Model. arXiv preprint arXiv:200300728. 2020
44.    Zhang H, Saravanan KM, Yang Y, Hossain MT, Li J, Ren X, et al. Deep Learning Based Drug Screening for Novel Coronavirus 2019-nCov. Research Gate preprint 2020020061v1. 2020
45.    Guang Li, Sharon E. Fox, Brian Summa, Bihe Hu, Carola Wenk, Aibek Akmatbekov, Jack L.Harbert, Richard S. Vander Heide, J. Quincy Brown. Multiscale 3-dimensional pathology findings of COVID-19 diseased lung using high-resolution cleared tissue microscopy. doi: https://doi.org/10.1101/2020.04.11.037473
46.    Cholissodin et al. Smart Development of Big Data App for Determining the Modelling of Covid-19 Medicinal Compounds Using Deep AI Core Engine System.  J. Phys. 2020; 1665: 1  doi:10.1088/1742-6596/1665/1/012003Conf. Ser. 1665 012003
47.    Kabra, R., & Singh, S. Evolutionary artificial intelligence based peptide discoveries for effective Covid-19 therapeutics. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2021; 1867(1): 165978.


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available