Author(s):
Narissara Kulpreechanan, Feuangthit N. Sorasitthiyanukarn
Email(s):
feuangthitns@gmail.com
DOI:
10.52711/0974-360X.2023.00871
Address:
Narissara Kulpreechanan1, Feuangthit N. Sorasitthiyanukarn2,3*
1Department of Public Health, Faculty of Medicine, Western University, Pathum Thani 12150, Thailand
2Center of Excellent in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
3Department of Alternative and Natural Medicine, Azteca University, Chalco 566000, Mexico
*Corresponding Author
Published In:
Volume - 16,
Issue - 11,
Year - 2023
ABSTRACT:
Astaxanthin (ATX), a member of the xanthophyll carotenoid family, possesses various bioactive properties. However, its incorporation into functional foods, nutraceuticals, and dietary supplements is challenging due to its low water solubility, limited bioaccessibility, and constrained bioavailability. To address this, a nanostructure with chitosan oligosaccharide/alginate nanoparticles (COANPs) was designed. Optimization relied on the Box-Behnken design (BBD) and was evaluated with the response surface methodology (RSM). Upon encapsulating ATX within COANPs, the synthesized ATX-COANPs displayed enhanced in vitro anti-inflammatory activity. Furthermore, these nanoparticles inhibited protein denaturation and demonstrated significant cytotoxic effects against MCF-7 breast cancer cells. Based on these findings, ATX-COANPs emerge as a promising oral delivery mechanism for ATX, suitable for integration into nutraceutical and functional food formulations.
Cite this article:
Narissara Kulpreechanan, Feuangthit N. Sorasitthiyanukarn. Astaxanthin-Loaded Chitosan Oligosaccharide/Alginate Nanoparticles: Exploring the Anti-inflammatory and Anticancer Potential as a Therapeutic Nutraceutical: An In vitro Study. Research Journal of Pharmacy and Technology. 2023; 16(11):5378-3. doi: 10.52711/0974-360X.2023.00871
Cite(Electronic):
Narissara Kulpreechanan, Feuangthit N. Sorasitthiyanukarn. Astaxanthin-Loaded Chitosan Oligosaccharide/Alginate Nanoparticles: Exploring the Anti-inflammatory and Anticancer Potential as a Therapeutic Nutraceutical: An In vitro Study. Research Journal of Pharmacy and Technology. 2023; 16(11):5378-3. doi: 10.52711/0974-360X.2023.00871 Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-11-65
REFERENCES:
1. Fakhri S, Abbaszadeh F, Dargahi L, Jorjani M. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol. Res. 2018; 136 (2018): 1-20. doi.org/10.1016/j.phrs.2018.08.012.
2. Higuera-Ciapara I, Félix-Valenzuela L, Goycoolea FM. Astaxanthin: a review of its chemistry and applications. Crit. Rev. Food Sci. Nutr. 2006; 46(2): 185-96. doi: 10.1080/10408690590957188.
3. Qiao R. Functional Polymeric Nanoparticles for Drug Delivery. Curr. Pharm. Des. 2022; 28(5): 339. doi: 10.2174/138161282805220111142951.
4. Sarika VK, Saudagar, RB. Nanoparticle- A Review. Asian J. Res. Pharm. Sci. 2017; 7(3): 162-172. doi: 10.5958/2231-5659.2017.00026.1.
5. Sangar OS, Patil AC, Payghan SA. Nanoparticles: As a Nano based Drug Delivery System. Asian J. Res. Pharm. Sci. 2022; 12(1): 11-6. doi:10.52711/2231-5659.2022.00003.
6. Manohar DK, Amit AJ, Suraj BK, Rahul PJ. A Review on Nanoparticles and its Application. Asian J. Pharm. Tech. 2019; 9(2): 115-124. doi:10.5958/2231-5713.2019.00020.5
7. Zielińska A, Carreiró F, Oliveira AM, Neves A. Pires B, Venkatesh DN, et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules. 2020; 25(16): 3731. doi: 10.3390/molecules25163731.
8. Megha BH, Nagesh C, Devdatt J, Chandrashekhara S. Development and Evaluation of Transdermal Drug Delivery System using Natural Polysaccharides. Research J. Pharma. Dosage Forms and Tech. 2012; 4(5): 278-284.
9. Li S, Zhang H, Chen K, Jin M, Vu SH, Jung S. et al. Application of chitosan/alginate nanoparticle in oral drug delivery systems: prospects and challenges. Drug Deliv. 2022; 29(1): 1142-1149. doi: 10.1080/10717544.2022.2058646.
10. Lanka D. M. Bhagavan R, Sushil YR. Chitosan-Based Micro and Nanoparticles: A Promising System for Drug Delivery. Research J. Pharm. and Tech. 2014; 7(12); 1463-1471.
11. Anilkumar JS, Harinath NM. Lovastatin Loaded Chitosan Nanoparticles: Preparation, Evaluation and In vitro Release Studies. Research J. Pharm. and Tech. 2011; 4(12); 1869-1876.
12. Desai JV, Patil JS, Kulkarni RV, Marapur SC, Dalavi VV. Alginate-Based Microparticulate Oral Drug Delivery System for Rifampicin. Research J. Pharm. and Tech. 2009; 2(2): 301-303.
13. Kumar S, Bhatt DC. Influence of Sodium Alginate and Calcium Chloride on the Characteristics of Isoniazid Loaded Nanoparticles. Research J. Pharm. and Tech. 2021; 14(1): 389-396.
14. Bhunchu S, Rojsitthisak P. Biopolymeric alginate-chitosan nanoparticles as drug delivery carriers for cancer therapy. Pharmazie. 2014; 69(8): 563-570. doi: 10.1691/ph.2014.3165
15. Gupta DK, Goswami R, Kumawat D, Gupta A, Chandy SM. A Review on Chitosan Nanoparticle as a Drug delivery system. Asian J. Pharm. Res. 2020; 10(4): 299-306.
16. Kumar V, Kumar P, Sharma S. Application of Box-Behnken Experimental Design in Process Parameter Optimization for Production of Berberine HCl loaded Chitosan Coated Sodium Alginate Nanoparticles. Research J. Pharm. and Tech. 2023; 16(3): 1139-1146. doi:10.52711/0974-360X.2023.00190
17. Cheung RCF, Ng TB, Wong JH, Chan WY. Chitosan: An update on potential biomedical and pharmaceutical applications. Mar. Drugs. 2015; 13: 5156-5186. doi: 10.3390/md13085156.
18. Naveed M, Phil L, Sohail M, Hasnat M, Baig MMFA, Ihsan AU. et al. 2019. Chitosan oligosaccharide (COS): An overview. Int J Biol Macromol. 2019; 15(129): 827-843. doi: 10.1016/j.ijbiomac.2019.01.192.
19. Muanprasat C, Chatsudthipong V. 2017. Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacol Ther. 2017; 170: 80-97. doi: 10.1016/j.pharmthera.2016.10.013.
20. Wang Y, Khan A, Liu Y, Feng J, Dai L. Wang G, et al. Chitosan oligosaccharide-based dual pH responsive nano-micelles for targeted delivery of hydrophobic drugs. Carbohydr. Polym. 2019; 1(223): 115061. doi: 10.1016/j.carbpol.2019.115061.
21. Sorasitthiyanukarn FN, Muangnoi C, Rojsitthisak P, Rojsitthisak P. Chitosan oligosaccharide/alginate nanoparticles as an effective carrier for astaxanthin with improving stability, in vitro oral bioaccessibility, and bioavailability. Food Hydrocoll. 2022; 120: 107246. doi.org/10.1016/j.foodhyd.2021.107246.
22. Jiang L, Yu Y, Li Y, Yu Y, Duan J, Zou Y. et al. Oxidative Damage and Energy Metabolism Disorder Contribute to the Hemolytic Effect of Amorphous Silica Nanoparticles. Nanoscale Res. Lett. 2016; 11: 57. doi: 10.1186/s11671-016-1280-5.
23. Gunathilake KDDP, Ranaweera KKDS, Vasantha Rupasinghe HP, In vitro Anti-Inflammatory Properties of Selected Green Leafy Vegetables. Biomedicines. 2018; 6: 107. doi: 10.3390/biomedicines6040107.
24. Muangnoi C, Ratnatilaka Na Bhuket P, Jithavech P, Supasena W, Paraoan L, Patumraj S, Rojsitthisak P. Curcumin Diethyl Disuccinate, a Prodrug of Curcumin, Enhances Anti-Proliferative Effect of Curcumin against HepG2 Cells via Apoptosis Induction. Sci. Rep. 2019; 9: 11718. doi.org/10.1038/s41598-019-48124-1.
25. Kathe N, Henriksen B, Chauhan H. Physicochemical Characterization Techniques for Solid Lipid Nanoparticles: Principles and Limitations. Drug Dev. Ind. Pharm. 2014; 40: 1565–1575. doi: 10.3109/03639045.2014.909840.
26. Hess S, Milonig R, 1972. Inflammation. In Inflammation, Mechanism and Control, Lepow L, Ward P, Eds., Academic Press: New York, NY, USA. pp. 1–2.
27. Niza E, Nieto-Jiménez C, Noblejas-López MDM, Bravo I, Castro-Osma JA, Cruz-Martínez F. et al. 2019. Poly(Cyclohexene Phthalate) Nanoparticles for Controlled Dasatinib Delivery in Breast Cancer Therapy. Nanomaterials. 2019; 9(9): 1208. doi: 10.3390/nano9091208.
28. Umapathy E, Ndebia EJ, Meeme A, Adam B, Menziwa P, Nkeh-Chungag BN. et al. An Experimental Evaluation of Albuca Setosa Aqueous Extract on Membrane Stabilization, Protein Denaturation and White Blood Cell Migration during Acute Inflammation. J. Med. Plant Res. 2010; 4: 789–795. doi.org/10.5897/JMPR10.056
29. Malathy S, Priya RI. Naringin Loaded Chitosan Nanoparticle for Bone Regeneration: A Preliminary in vitro Study. J. Nanomed. Nanotechnol. 2018; 09: 507. doi.org/10.4172/2157-7439.1000507.
30. El-Ansary A, Al-Daihan S. On the Toxicity of Therapeutically Used Nanoparticles: An Overview. J. Toxicol. 2009; 2009: 1–9. doi: 10.1155/2009/754810.
31. Hu YL, Qi W, Han F, Shao JZ, Gao JQ. Toxicity Evaluation of Biodegradable Chitosan Nanoparticles Using a Zebrafish Embryo Model. Int. J. Nanomedicine. 2011; 6: 3351. doi: 10.2147/IJN.S25853.