Author(s):
Yasser Bustanji, Nadia Quqazeh, Moahmmad Mohammad, Mohammad Hudaib, Khaled Tawaha, Bashaer Abu-Irmaileh, Basil Albustanji, Hana Bajes
Email(s):
bajes80@gmail.com , bustanji@ju.edu.jo
DOI:
10.52711/0974-360X.2023.00776
Address:
Yasser Bustanji1,2*, Nadia Quqazeh2, Moahmmad Mohammad2, Mohammad Hudaib2, Khaled Tawaha2, Bashaer Abu-Irmaileh3, Basil Albustanji4, Hana Bajes5
1Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates.
2School of Pharmacy, The University of Jordan, Amman, Jordan.
3Hamdi Mango Center for Scientific Research, The University of Jordan, Amman, Jordan.
4Faculty of Medicine — Mutah University, Karak, Jordan.
5Science Department, Atlantic Cape Community College, 08330, Mays Landing, NJ, United States.
*Corresponding Author
Published In:
Volume - 16,
Issue - 10,
Year - 2023
ABSTRACT:
Background: Obesity is an epidemic health problem, affecting all population and different age groups. It is associated with many health conditions as diabetes mellitus, cardiovascular diseases, atherosclerosis as well as metabolic syndrome. Lifestyle changes and pharmacological therapies have been used for obesity treatment, but have not accomplished the expected to minimize the increasing rate of obesity worldwide. A wide range of herbal extracts has been reported to be useful in obesity treatment which suggests herbal medicine as potential candidate for obesity management. The aim of this study is to explore plant potential to counteract obesity threats. Methods: Methanolic extract of 20 medicinal plants, belonging to 11 different families were assayed spectrophotometrically for their LPL inhibition activity. Results: 11 out of 20 extracts have an inhibitory effect on LPL enzyme that ranges between 32.92% and 11.96%. The most active plant is Onosma giganteum Lam. (32.92%) followed by Hypecoum dimidiatum Delile (29.04%) and Chrysanthemum coronarium L. (27.81%). Conclusion: Herbal medicinal plants represent potential candidates to be implemented in new therapeutic era. Our results have shown that 11 out of 20 tested plants have LPL inhibition activity, for a certain extent. However, further studies are needed to investigate their potential activity in vivo to develop new anti-obesity treatment
Cite this article:
Yasser Bustanji, Nadia Quqazeh, Moahmmad Mohammad, Mohammad Hudaib, Khaled Tawaha, Bashaer Abu-Irmaileh, Basil Albustanji, Hana Bajes. Screening of some medicinal plant extracts for their lipoprotein lipase inhibition activity. Research Journal of Pharmacy and Technology 2023; 16(10):. doi: 10.52711/0974-360X.2023.00776
Cite(Electronic):
Yasser Bustanji, Nadia Quqazeh, Moahmmad Mohammad, Mohammad Hudaib, Khaled Tawaha, Bashaer Abu-Irmaileh, Basil Albustanji, Hana Bajes. Screening of some medicinal plant extracts for their lipoprotein lipase inhibition activity. Research Journal of Pharmacy and Technology 2023; 16(10):. doi: 10.52711/0974-360X.2023.00776 Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-10-46
REFERENCES:
1. Racette SB, Deusinger SS, Deusinger RH. Obesity: Overview of Prevalence, Etiology, and Treatment. Phys Ther. 2003;83(3):276-288. doi:10.1093/ptj/83.3.276
2. Must A. The Disease Burden Associated With Overweight and Obesity. JAMA. 1999; 282(16): 1523. doi:10.1001/jama.282.16.1523
3. Harb A.A., Bustanji Y.K., Abdalla S.S. Hypocholesterolemic effect of β-caryophyllene in rats fed cholesterol and fat enriched diet. Journal of Clinical Biochemistry and Nutrition, 2018, 62 (3): 230 - 237. DOI: 10.3164/jcbn.17-3
4. Saad B, Azaizeh H, Said O. Tradition and perspectives of arab herbal medicine: a review. Evidence-based complementary and alternative medicine: eCAM. 2005;2(4):475-479. doi:10.1093/ecam/neh133
5. Powell AG, Apovian CM, Aronne LJ. New Drug Targets for the Treatment of Obesity. Clinical Pharmacology andamp; Therapeutics. 2011; 90(1):40-51. doi:10.1038/clpt.2011.82
6. Mashmoul M, Azlan A, Khaza'ai H, Yusof BNM, Noor SM. Saffron: A Natural Potent Antioxidant as a Promising Anti-Obesity Drug. Antioxidants (Basel). 2013; 2(4):293-308. doi:10.3390/antiox2040293
7. Mohammad M, Al-masri IM, Issa A, Khdair A, Bustanji Y. Inhibition of pancreatic lipase by berberine and dihydroberberine: an investigation by docking simulation and experimental validation. Med Chem Res. 2012/09/06 2012;22(5):2273-2278. doi:10.1007/s00044-012-0221-9
8. Basu D, Goldberg IJ. Regulation of lipoprotein lipase-mediated lipolysis of triglycerides. Curr Opin Lipidol. 2020; 31(3):154-160. doi:10.1097/mol.0000000000000676
9. Wang H, Eckel RH. Lipoprotein lipase: from gene to obesity. American Journal of Physiology-Endocrinology and Metabolism. 2009; 297(2): E271-E288. doi:10.1152/ajpendo.90920.2008
10. Puhl RM, Heuer CA. The Stigma of Obesity: A Review and Update. Obesity. 2009;17(5):941-964. doi:10.1038/oby.2008.636
11. Zahi MR, Liang H, Khan A, Yuan Q. Identification of Essential Oil Components in Chinese Endemic Plant Achnatherum inebrians. Asian Journal of Research in Chemistry. 2014;7(6):576-579.
12. Abu-Gharbieh E., Shehab N.G., Almasri I.M., Bustanji Y. Antihyperuricemic and xanthine oxidase inhibitory activities of Tribulus arabicus and its isolated compound, ursolic acid: In vitro and in vivo investigation and docking simulations. PLoS ONE, 2019, 13 (8), art. no. e0202572, Cited 27 times. DOI: 10.1371/journal.pone.0202572
13. Edrah S, Eman O, Kumar A. Preliminary phytochemical and antibacterial studies of Convolvulus arvensis and Thymus capitatus plants extracts. Research Journal of Pharmacognosy and Phytochemistry. 2013;5(5):220-223.
14. Bustanji Y., Hudaib M., Tawaha K., Mohammad M.K., Almasri I., Hamed S., Oran S. In vitro xanthine oxidase inhibition by selected Jordanian medicinal plants. Jordan Journal of Pharmaceutical Sciences, 2011, 4 (1):49 - 55
15. Zohra M, Fawzia A. Chemical Composition and Antioxidant Activity of Essential Oil from Smyrnium olusatrum L. Asian Journal of Research in Chemistry. 2011;4(2):217-220.
16. Burali Sanganna ARK. Antioxidant and Anti-colon cancer activity of fruit peel of Citrus reticulate essential oil on HT-29 cell line. Res J Pharm Technol. 2013;6(2):216-219.
17. Bajes HR, Oran SA, Bustanji YK. Chemical Composition and Antiproliferative and Antioxidant Activities of Essential Oil from Juniperus phoenicea L. Cupressaceae. Res J Pharm Technol. 2022:153-159. doi:10.52711/0974-360x.2022.00025
18. Motawi T.M.K., Bustanji Y., El-Maraghy S., Taha M.O., Al-Ghussein M.A.S. Evaluation of naproxen and cromolyn activities against cancer cells viability, proliferation, apoptosis, p53 and gene expression of survivin and caspase-3. Journal of Enzyme Inhibition and Medicinal Chemistry, 2014, 29 (2):153 - 161, DOI: 10.3109/14756366.2012.762645
19. Bajes HR, Oran SA, Bustanji YK. Chemical Composition and Antiproliferative and Antioxidant Activities of Methanolic Extract of Alcea setosa A. Malvaceae. Res J Pharm Technol. 2021:6447-6454. doi:10.52711/0974-360x.2021.01115
20. Bajes HR, Oran SA, Al-Dujaili EAS. Investigating the Anti-Viral and Anti-Bacterial activities of Jordanian Medicinal plants: A narrative review. Res J Pharm Technol. 2022: 127-136. doi:10.52711/0974-360x.2022.00021
21. Moualla N, Naser M. Using GC/MS to Study the Chemical Composition of Essential Oil of Thymus vulgaris L. at AL-Qadmous Area, Syria. Res J Pharm Technol. 2015; 8(4) doi:10.5958/0974-360X.2015.00073.6
22. Bajes HR, Almasri I, Bustanji Y. Plant Products and Their Inhibitory Activity Against Pancreatic Lipase. Revista Brasileira de Farmacognosia. 2020, 30 (3):321-330, DOI: 10.1007/s43450-020-00055-z
23. Bajes H, Al-Dujaili E. Polyphenolic-rich Fruits and Supplements Enhance Exercise Performance; General Review. 2018:2017-135.
24. Gupta M, Gupta A, Gupta S. Insecticidal Activity of Essential Oils Obtained from Piper nigrum and Psoralea corylifolia Seeds against Agricultural Pests. Asian Journal of Research in Chemistry. 2013; 6(3):360-363.
25. Boukraa N, Ladjel S, Goudjil MB, Eddoud A, Sanori KWM. Chemical compositions, Fumigant and Repellent Activities, of Essential oils from three Indigenous medicinal plants and their mixture, against stored grain pest, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Asian Journal of Research in Chemistry. 2020; 13(6): 455-464. doi:10.5958/0974-4150.2020.00081.4
26. Bustanji Y., Taha M.O., Yousef A.-M., Al-Bakri A.G. Berberine potently inhibits protein tyrosine phosphatase 1B: Investigation by docking simulation and experimental validation. Journal of Enzyme Inhibition and Medicinal Chemistry, 2006, 21 (2): 163 - 171, DOI: 10.1080/14756360500533026
27. O'Rahilly S, Farooqi IS. Genetics of obesity. Philosophical transactions of the Royal Society of London Series B, Biological Sciences. 2006;361(1471):1095-1105. doi:10.1098/rstb.2006.1850
28. Lustig RH. Hypothalamic Obesity. Pediatr Obes: Springer New York; 2010. p. 377-388.
29. Krishnan J, Danzer C, Simka T, et al. Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system. Genes Dev. 2012; 26(3): 259-270. doi:10.1101/gad.180406.111
30. Wang S, Moustaid-Moussa N, Chen L, et al. Novel insights of dietary polyphenols and obesity. J Nutr Biochem. 2014; 25(1):1-18. doi:10.1016/j.jnutbio.2013.09.001
31. Pak-Dek MS, Abdul-Hamid A, Osman A, Soh CS. Inhibitory Effect of Morinda Citrifolia L. on Lipoprotein Lipase Activity. J Food Sci. 2008;73(8):C595-C598. doi:10.1111/j.1750-3841.2008.00929.x
32. Kumar N, Kumar R, Kishore K. Onosma L.: A review of phytochemistry and ethnopharmacology. Pharmacogn Rev. 2013; 7(14): 140-151. doi:10.4103/0973-7847.120513
33. Bustanji Y, Al-Masri IM, Mohammad M, et al. Pancreatic lipase inhibition activity of trilactone terpenes of Ginkgo biloba. Journal of Enzyme Inhibition and Medicinal Chemistry. 2010; 26(4): 453-459. doi:10.3109/14756366.2010.525509
34. Song M-C, Yang H-J, Jeong T-S, Kim K-T, Baek N-I. Heterocyclic compounds from Chrysanthemum coronarium L. and their inhibitory activity on hACAT-1, hACAT-2, and LDL-oxidation. Arch Pharm Res. 2008; 31(5): 573-578. doi:10.1007/s12272-001-1195-4