Author(s):
Citra Dewi Maharani, Nurwasis, Delfitri Lutfi, Clarisa Finanda, Kautsar Abiyoga, Evelyn Komaratih, Yulia Primitasari, Wimbo Sasono, Djoko Legowo
Email(s):
nurwasis@fk.unair.ac.id
DOI:
10.52711/0974-360X.2023.00772
Address:
Citra Dewi Maharani1, Nurwasis1*, Delfitri Lutfi1, Clarisa Finanda1, Kautsar Abiyoga1, Evelyn Komaratih1, Yulia Primitasari1, Wimbo Sasono1, Djoko Legowo2
1Department of Ophthalmology, Faculty of Medicine Universitas Airlangga – Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
2Department of Pathology Anatomy, Faculty of Veterinary Universitas Airlangga – Animal Hospital, Universitas Airlangga Academic Hospital, Surabaya, Indonesia.
*Corresponding Author
Published In:
Volume - 16,
Issue - 10,
Year - 2023
ABSTRACT:
Aims: To assess the effects of intravitreal triamcinolone acetonide and bevacizumab on the expression of matrix metalloproteinase MMP-2 and its inhibitor TIMP-1 in an experimental rabbit model of penetrating injury. Settings and Design: An accurate experimental study of five left eyes as negative control and 27 eyes with penetrating injury with or without treatment from 27 rabbits. Methods and Material: A total of 30 New Zealand rabbits were recruited, and penetrating injury was performed in the superotemporal quadrant of the right eye by making incisions 5 mm horizontally and 6 mm behind the limbus. The rabbits were split into five groups: OGI, intravitreal triamcinolone acetonide, and bevacizumab, with varying injection timings (n = 6 per group). All eyes were inspected and analyzed by assessing the expression of MMP-2 and TIMP-1. Statistical analysis used: Statistical analysis was performed using the Prism GraphPad 9. Statistical calculations were made by ANOVA test. All descriptive data are presented as mean+standard deviation. P value less than 0.05 was considered significant statistically. Results: The expression of MMP-2 in the treatment group was considerably lower than in control penetrating injury group (8,36±1,699, p<0,0001), conversely TIMP-1 expression was higher in the treatment group (4,72±1,026, P 0,0593). Fibrosis was assessed with HE staining and primarily detected in positive control groups. Conclusions: TA and bevacizumab treatments after penetrating injury effectively inhibited the elevation of MMP-2 and decreased the expression of TIMP-1 in the retina and wound site tissue, respectively. It reduces the possibility of acquiring posttraumatic PVR.
Cite this article:
Citra Dewi Maharani, Nurwasis, Delfitri Lutfi, Clarisa Finanda, Kautsar Abiyoga, Evelyn Komaratih, Yulia Primitasari, Wimbo Sasono, Djoko Legowo. Role of Intravitreal Triamcinolone Acetonide and Bevacizumab in Expression of Matrix Metalloproteinase and Inhibitor in Rabbit Penetrating Injury Model. Research Journal of Pharmacy and Technology 2023; 16(10):4759-6. doi: 10.52711/0974-360X.2023.00772
Cite(Electronic):
Citra Dewi Maharani, Nurwasis, Delfitri Lutfi, Clarisa Finanda, Kautsar Abiyoga, Evelyn Komaratih, Yulia Primitasari, Wimbo Sasono, Djoko Legowo. Role of Intravitreal Triamcinolone Acetonide and Bevacizumab in Expression of Matrix Metalloproteinase and Inhibitor in Rabbit Penetrating Injury Model. Research Journal of Pharmacy and Technology 2023; 16(10):4759-6. doi: 10.52711/0974-360X.2023.00772 Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-10-42
REFERENCES:
1 Mekhlef AK. Hameed IH. Khudhair ME. Prevalence of Physical Injuries on the Head, Neck and Entire Body in, Hilla, Iraq. Res J Pharm Technol. 2017;10(10):3276. doi.org/10.5958/0974-360X.2017.00581.9
2 Zungu T. Mdala S. Manda C. Twabi HS. Kayange P. Characteristics and visual outcome of ocular trauma patients at Queen Elizabeth Central Hospital in Malawi. PLoS One. 2021;16(3 March):1–11. doi.org/10.1371/journal.pone.0246155
3 Widjaja SA. Hiratsuka Y. Ono K. Yustiarini I. Nurwasis N. Murakami A. Ocular Trauma Trends in Indonesia: Poor Initial Uncorrected Visual Acuity Associated with Mechanism of Injury. Open Access Maced J Med Sci. 2021; 9(B):903–8. doi.org/10.3889/oamjms.2021.6862
4 Jasim AA. Hameed IH. Hapeep MA. Traumatic Events in an Urban and Rural Population of Children, Adolescents, and Adults in Babylon Governorate-Iraq. Res J Pharm Technol. 2017;10(10):3429–34. doi.org/10.5958/0974-360X.2017.00610.2
5 Tilahun L. Beza L. Zewudu T. Estifanos N. Dagnew K. Gedamua S. Babu MJ. et al. Analysis of Traumatic Injuries among Patients Visiting Adult Emergency Department of Addisa Ababa Burn, Emergency, and Trauma Hospital, Addis Ababa, Ethiopia, 2017 G.C. Asian J Nurs Educ Res. 2019;9(4):504. doi.org/10.5958/2349-2996.2019.00106.x
6 Coelho J. Ferreira A. Kuhn F. Meireles A. Globe Ruptures: Outcomes and Prognostic Analysis of Severe Ocular Trauma. Ophthalmologica. 2022;245(4):376–84. doi.org/10.1159/000523705
7 Kuhn F. Morris R. Witherspoon CD. BETT: The Terminology of Ocular Trauma. In: Ocular Trauma-Principle and Practicle. New York: Springer US; 2008. p. 3–5.
8 Kuhn F. Morris R. Mester V. Witherspoon C. Terminology of (BETT), Mechanical Injuries: the Birmingham Eye Trauma Terminology 3. In: Ocular Traumatology. New York: Springer; 2008.
9 Choovuthayakorn J. Worakriangkrai V. Patikulsila D. Watanachai N. Kunavisarut P. Chaikitmongkol V. Luewattananont D. et al. Epidemiology of eye injuries resulting in hospitalization, a referral hospital-based study. Clin Ophthalmol. 2020;14:1–6. doi.org/10.2147/OPTH.S234035
10 Morescalchi F. Duse S. Gambicorti E. Romano MR. Costagliola C. Semeraro F. Proliferative Vitreoretinopathy after eye injuries: An overexpression of growth factors and cytokines leading to a retinal keloid. Mediators Inflamm. 2013;2013. doi.org/10.1155/2013/269787
11 Uluer ET. Vatansever HS. Kurt FO. Wound Healing and Microenvironment. In: Turksen K, editor. Wound Healing. Hoboken: Wiley Blackwell; 2018. p. 67–78.
12 Cardillo JA. Stout JT. LaBree L. Azen SP. Omphroy L. Cui JZ. Kimura H. et al. Post-Traumatic Proliferative Vitreoretinopathy: The Epidemiologic Profile, Onset, Risk Factors, and Visual Outcome. Ophthalmology. 1997;104(7):1166–73. doi.org/10.1016/S0161-6420(97)30167-5
13 Kwon OW. Song JH. Roh MI. Retinal detachment and proliferative vitreoretinopathy. Dev Ophthalmol. 2015;55:154–62. doi.org/10.1159/000438972
14 Dai Y. Dai C. Sun T. Inflammatory mediators of proliferative vitreoretinopathy: hypothesis and review. Int Ophthalmol. 2020;40(6):1587–601. doi.org/10.1007/s10792-020-01325-4
15 Wiedemann P. Yandiev Y. Hui YN. Wang Y. Pathogenesis of Proliferative Vitreoretinopathy. In: Schachat AP, editor. Ryan’s Retina. Sixth Edit. Elsevier; 2018. p. 1640–6.
16 Zhao X. Han H. Song Y. Du M. Liao M. Dong X. Wang X. et al. The Role of Intravitreal Anti-VEGF Agents in Rabbit Eye Model of Open-Globe Injury. J Ophthalmol. 2021;2021. doi.org/10.1155/2021/5565178
17 Victor AA. Violetta L. Kusumowidagdo G. Pranata R. Pars-Plana Vitrectomy Combined with Retinectomy in Severe Open-Globe Injuries: A Systematic Review and Meta-A nalysis. Eur J Ophthalmol. 2022;32(3):1652–61. doi.org/10.1177/11206721211029472
18 Mehdizadeh M. Fattahi F. Eghtedari M. Nowroozzadeh MH. Toosi F. The role of intravitreal bevacizumab in experimental posterior penetrating eye injury. Retina. 2011;31(1):154–60. doi.org/10.1097/IAE.0b013e3181e096f3
19 Oner A. Kahraman N. Ozdamar S. Balcioglu E. Comparison of the effects of intravitreal bevacizumab and dexamethasone in experimental posterior penetrating eye injury. Int J Ophthalmol. 2018;11(4):575–9. doi.org/10.18240/ijo.2018.04.06
20 Andrés-Guerrero V. Perucho-González L. García-Feijoo J. Morales-Fernández L. Saenz-Francés F. Herrero-Vanrell R. Júlvez LP. et al. Current Perspectives on the Use of Anti-VEGF Drugs as Adjuvant Therapy in Glaucoma. Adv Ther. 2017;34(2):378–95. doi.org/10.1007/s12325-016-0461-z
21 Banerjee PJ. Woodcock MG. Bunce C. Scott R. Charteris DG. A Pilot Study of Intraocular Use of Intensive Anti-Inflammatory; Triamcinolone Acetonide to Prevent Proliferative Vitreoretinopathy in Eyes Undergoing Vitreoretinal Surgery for Open Globe Trauma; the Adjuncts in Ocular Trauma (AOT) Trial: Study Protocol f. Trials. 2013;14(1):42. doi.org/10.1186/1745-6215-14-42
22 Dunaieva M V. Pohorielov O V. Getman Y V. Mizyakina K V. Wang Z. New Approaches to Neurophysiological Diagnosis and Treatment of Diabetic Vitreal Hemorrhages. Res J Pharm Technol. 2019;12(12):5723. doi.org/10.5958/0974-360X.2019.00990.9
23 Nurwasis N. Yuliawati D. Komaratih E. Heriyawati H. The Effect of Subconjunctival Bevacizumab on Angiogenesis in Rabbit Model. Folia Medica Indones. 2021;55(4):290. doi.org/10.20473/fmi.v55i4.24465
24 Ahn SJ. Hong HK. Na YM. Park SJ. Ahn J. Oh J. Chung JY. et al. Use of rabbit eyes in pharmacokinetic studies of intraocular drugs. J Vis Exp. 2016;2016(113):1–8. doi.org/10.3791/53878
25 Prakoeswa CRS. Rindiastuti Y. Wirohadidjojo YW. Komaratih E. Nurwasis. Dinaryati A. Lestari NMI. et al. Resveratrol promotes secretion of wound healing related growth factors of mesenchymal stem cells originated from adult and fetal tissues. Artif Cells, Nanomedicine Biotechnol. 2020;48(1):1160–7. doi.org/10.1080/21691401.2020.1817057
26 Banerjee PJ. Xing W. Bunce C. Woodcock M. Chandra A. Scott RAH. Charteris DG. Triamcinolone during pars plana vitrectomy for open globe trauma: A pilot randomised controlled clinical trial. Br J Ophthalmol. 2016;100(7):949–55. doi.org/10.1136/bjophthalmol-2015-307347
27 Khan W. Ansari VA. Hussain Z. Self-Nano Emulsifying Drug Delivery System (SNEEDS) for Ocular Administration. Res J Pharm Technol. 2020;13(11):5576–82. doi.org/10.5958/0974-360X.2020.00973.7
28 Valarmathi S. Shanmugam S. Kumar SS. Shanmugasundaram P. In Vivo studies of Ophthalmic Ocular Insert Containing Aciclovir. Res J Pharm Technol. 2017;10(7):2139. doi.org/10.5958/0974-360X.2017.00376.6
29 Al-Juboori ZA. Mahdi ZH. Alhamdany AT. Formulation and Evaluation of Ocular in-Situ Gelling System Containing Ciprofloxacin and Naproxen Sodium. Res J Pharm Technol. 2021;14(1):91–5. doi.org/10.5958/0974-360X.2021.00017.2
30 Nayak S. Jadhav M. Bhaskar V. Recent Advances in Ocular Drug Delivery Systems. Res J Pharm Technol. 2016;9(7):995. doi.org/10.5958/0974-360X.2016.00189.X
31 Y Zernii E. E Baksheeva V. N Iomdina E. A Averina O. E Permyakov S. P Philippov P. A Zamyatnin A. et al. Rabbit Models of Ocular Diseases: New Relevance for Classical Approaches. CNS Neurol Disord - Drug Targets. 2016;15(3):267–91. doi.org/10.2174/1871527315666151110124957
32 Chitra V. Ali MA. Animal Models for Osteoporosis-A Review. Res J Pharm Technol. 2020;13(3):1543. doi.org/10.5958/0974-360X.2020.00280.2
33 Moon SW. Sun Y. Warther D. Huffman K. Freeman WR. Sailor MJ. Cheng L. New model of proliferative vitreoretinopathy in rabbit for drug delivery and pharmacodynamic studies. Drug Deliv. 2018;25(1):600–10. doi.org/10.1080/10717544.2018.1440664
34 Chen XF. Du M. Wang XH. Yan H. Effect of etanercept on post-traumatic proliferative vitreoretinopathy. Int J Ophthalmol. 2019;12(5):731–8. doi.org/10.18240/ijo.2019.05.06
35 Sternlicht MD. Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001;17:463–516. doi.org/10.1146/annurev.cellbio.17.1.463
36 Symeonidis C. Papakonstantinou E. Souliou E. Karakiulakis G. Dimitrakos SA. Diza E. Correlation of matrix metalloproteinase levels with the grade of proliferative vitreoretinopathy in the subretinal fluid and vitreous during rhegmatogenous retinal detachment. Acta Ophthalmol. 2011;89(4):339–45. doi.org/10.1111/j.1755-3768.2009.01701.x
37 Okada Y. Immunohistochemistry of MMPs and TIMPs. In: Methods in Molecular Biology. Springer Science+Business Media; 2010. p. 211–9. doi.org/10.1007/978-1-60327-299-5 12
38 Nowak M. Madej JA. Dziȩgiel P. Intensity of COX2 expression in cells of soft tissue fibrosarcomas in dogs as related to grade of tumour malignancy. Bull Vet Inst Pulawy. 2007;51(2):275–9.
39 Singh S. Young A. McNaught CE. The physiology of wound healing. Surgery. 2017;35(9):473–7. doi.org/10.1016/j.mpsur.2017.06.004
40 Komariah C. Salsabila R. Hilda Hapsari A. Rizky Kurnia Putri S. Febianti Z. The Anti-Inflammatory Effect of Onion Extract in Rabbit with Corneal Ulcer. Res J Pharm Technol. 2021;14(4):1854–8. doi.org/10.52711/0974-360X.2021.00328
41 Siemerink MJ. Augustin AJ. Schlingemann RO. Mechanisms of ocular angiogenesis and its molecular mediators. Dev Ophthalmol. 2010;46:4–20. doi.org/10.1159/000320006
42 Vijayakumar V. Radhakrishnan N. Vasantha-Srinivasan P. Molecular Docking Analysis of Triazole Analogues as Inhibitors of Human Neutrophil Elastase (HNE), Matrix Metalloproteinase (MMP 2 and MMP 9), and tyrosinase. Res J Pharm Technol. 2020;13(6):2777–83. doi.org/10.5958/0974-360X.2020.00493.X
43 Abu El-Asrar AM. Mohammad G. Nawaz MI. Siddiquei MM. Van Den Eynde K. Mousa A. De Hertogh G. et al. Relationship between vitreous levels of matrix metalloproteinases and vascular endothelial growth factor in proliferative diabetic retinopathy. PLoS One. 2013;8(12):1–11. doi.org/10.1371/journal.pone.0085857
44 Agustini L. Nurwasis N. Aryati A. Suhendro G. Winarto W. Sudiana IK. Widjiati W. et al. Mechanism of Apoptosis Retinal Ganglion Cells Rattus norvegicus Caused by Ethambutol. Res J Pharm Technol. 2022;15(April):1795–9. doi.org/10.52711/0974-360x.2022.00301
45 Lee SY. Ryan SJ. Pathophysiology of Ocular Trauma. In: Schachat AP, editor. Ryan’s Retina. Sixth Edit. Elsevier; 2018. p. 1647–55.
46 Chen SH. Lin YJ. Wang LC. Tsai HY. Yang CH. Teng YT. Hsu SM. Doxycycline ameliorates the severity of experimental proliferative vitreoretinopathy in mice. Int J Mol Sci. 2021;22(21). doi.org/10.3390/ijms222111670
47 Jia HZ. Pang X. Peng XJ. Changes of matrix metalloproteinases in the stroma after corneal cross-linking in rabbits. Int J Ophthalmol. 2021;14(1):26–31. doi.org/10.18240/ijo.2021.01.04
48 Jiang Y. Zhang C. Ma J. Wang L. Gao J. Ren J. He W. et al. Expression of matrix Metalloproteinases-2 and aquaporin-1 in corneoscleral junction after angle-closure in rabbits. BMC Ophthalmol. 2019;19(1):1–9. doi.org/10.1186/s12886-019-1058-5
49 Zhao Y. Singh RP. The role of anti-vascular endothelial growth factor (anti-VEGF) in the management of proliferative diabetic retinopathy. Drugs Context. 2018;7:1–10. doi.org/10.7573/dic.212532