Author(s):
Siddabathuni Ramanjaneyulu, K.M.V. Narayana Rao, Shyamala Pulipaka
Email(s):
sramanjaneyulu8@gmail.com
DOI:
10.52711/0974-360X.2023.00765
Address:
Siddabathuni Ramanjaneyulu1, K.M.V. Narayana Rao1, Shyamala Pulipaka2
1Department of Analytical Research and Development, Inogent Laboratories Ltd. (A GVK Bio Company), Analytical R and D, Hyderabad - 500076, India.
2Department of Physical and Nuclear Chemistry and Chemical Oceanography, Andhra University, Visakhapatnam – 530003, India.
*Corresponding Author
Published In:
Volume - 16,
Issue - 10,
Year - 2023
ABSTRACT:
A gas chromatography technique coupled with head space sampling and detection with flame ionizer approach (GST-HSS-FI) methodology was established to determine seven process associated solvent impurities (acetone, ethyl acetate, methanol, mesityl oxide, chlorobenzene, diacetone alcohol, isopropyl alcohol) and two by-product associated solvent impurities (ethyl vinyl ketone and methyl isobutyl ketone) in ibandronate sodium bulk material and ibandronate sodium commercial product. By using dimethyl sulphoxide and clean water (70%:30% v/v) as a solvent, the standard curves for target solvent impurities with correlation coefficient scores over 0.99 were effectively plotted by GST-HSS-FI methodology in a selected concentration range (LOQ measure level to 120% of acceptable limit level). The approach was used to the identification of volatile target solvent impurities in ibandronate sodium bulk material and commercial product to validate its realistic application capacity. The GST-HSS-FI methodology presented the good, precise, accurate, specific and robust detection and assessment of volatile target solvent impurities, demonstrating its aptness to characterise the quality profile of ibandronate sodium bulk material and ibandronate sodium commercial product.
Cite this article:
Siddabathuni Ramanjaneyulu, K.M.V. Narayana Rao, Shyamala Pulipaka. Assessment of Seven Process Associated Solvent Impurities and two by-Product Associated Solvent Impurities in Ibandronate Sodium Bulk Material and Commercial Product Employing Gas Chromatography. Research Journal of Pharmacy and Technology 2023; 16(10):4711-8. doi: 10.52711/0974-360X.2023.00765
Cite(Electronic):
Siddabathuni Ramanjaneyulu, K.M.V. Narayana Rao, Shyamala Pulipaka. Assessment of Seven Process Associated Solvent Impurities and two by-Product Associated Solvent Impurities in Ibandronate Sodium Bulk Material and Commercial Product Employing Gas Chromatography. Research Journal of Pharmacy and Technology 2023; 16(10):4711-8. doi: 10.52711/0974-360X.2023.00765 Available on: https://rjptonline.org/AbstractView.aspx?PID=2023-16-10-35
REFERENCES:
1. Liang S. Hu S. Guo H. Dong L. Liu G. Liu Y. Ibandronate sodium and zoledronate sodium in the treatment of senile osteoporosis: efficacy, impact on quality of life and cost-effectiveness analysis. American Journal of Translational Research. 2021;13(3): 1764-71.
2. Wu SN. Huang YM. Liao YK. Effects of ibandronate sodium, a nitrogen-containing bisphosphonate, on intermediate-conductance calcium-activated potassium channels in osteoclast precursor cells (RAW 264.7). Journal of Membrane Biology. 2015;248(1):103-15. doi.org/10.1007/s00232-014-9747-8.
3. Dwivedi AM. Residual solvent analysis in pharmaceuticals. Pharmaceutical Technology Europe. 2002;14(12): 42–6.
4. Nojavan S. Ghassempour A. Bashour Y. Darbandi MK. Ahmadi SH. Determination of residual solvents and investigation of their effect on ampicillin trihydrate crystal structure. Journal of Pharmaceutical and Biomedical Analysis. 2005;36(5):983-8. doi.org/10.1016/j.jpba.2004.08.031.
5. Grodowska K. Parczewski A. Organic solvents in the pharmaceutical industry. Acta Poloniae Pharmaceutical—Drug Research. 2010;67(1):3–12.
6. Ramanjaneyulu S. Rao KMVN. Pulipaka S. Shorter and rugged analytical GC method for residual solvents content in active pharmaceutical ingredient. Journal of Chromatographic Science. 2022;60(2):117-25. doi.org/10.1093/chromsci/bmab051.
7. International Conference on Harmonization (ICH) of Technical Requirements for the Registration of Pharmaceuticals for Human Use, Guideline on Impurities: Guidelines for Residual solvents Q3C (R5), Harmonized Tripartite Guideline, ICH, Geneva, Switzerland, 1997.
8. He X. Ma Y. Yi G. Rapid and sensitive analysis of volatile components of different parts of clausena lansium by ionic liquid-based headspace gas chromatography-mass spectrometry. Molecules. 2018;24(1):91. doi.org/10.3390/molecules24010091
9. Liu Y. Ge N. Wang F. Li J. Wu Y. Huang X. Cao Y. Simultaneous determination of 57 residual volatile organic solvents in honey by headspace gas chromatography-mass spectrometry. Se Pu. 2012;30(8):782-91. doi.org/10.3724/sp.j.1123.2012.03050.
10. Ashwini RP. Prajkta MG. Bhavna JD. Manish SK. Review on chromatography principal types and it’s application. Research Journal of Pharmaceutical Dosage Forms and Technology. 2020;12(1):27-32. doi.org/10.5958/0975-4377.2020.00005.1
11. Shoeb A. Amer A. Mahzia Ya. Validated HS-GC-FID method for determination of residual ethanol in solid dosage form. Research Journal of Pharmacy and Technology. 2014;7(2):184-87.
12. Babu JR. Suhasini J. Vidyadhara S. Residual solvents in bendamustine hydrochloride by headspace chromatography. Asian Journal of Pharmaceutical Analysis. 2018; 8(1): 7-12. doi.org/10.5958/2231-5675.2018.00002.9
13. Ali I. Youssef A. Determination of ethanol and n-hexane residues in bulk rosuvastatin and atorvastatin and their dosage forms using HS-GC-MS developed method. Research Journal of Pharmacy and Technology. 2018; 11(11): 4829-36. doi.org/10.5958/0974-360X.2018.00878.8
14. Raghad H. Fadi A. Saleh T. Yaser B. Determination thymol in thyme extract and its pharmaceutical forms by using gas chromatography method. Research Journal of Pharmacy and Technology. 2020; 13(9):4055-60. doi.org/10.5958/0974-360X.2020.00717.9
15. Cijo J. Mohd I. Sudhakar P. Priyankar G. Varshney KM. Shukla SK. Determination of clonazepam in chocolate using high performance liquid chromatography and further confirmation by gas chromatography- mass spectrometry. Asian Journal of Research in Chemistry. 2011;4(5):761-65.
16. Rabie SF. Sayed RAA. Confirmatory method for determination of 11-Nor-Δ9 -Tetrahydrocannabinol-9-Carboxylic acid in urine samples using gas chromatography–mass spectrometry (GC/MS). Asian Journal of Research in Chemistry. 2011;4(3):373-76
17. Jose BE. Selvam PP. Identification of phytochemical constituents in the leaf extracts of azima tetracantha lam using gas chromatography-mass spectrometry (GC-MS) analysis and antioxidant activity. Asian Journal of Research in Chemistry. 2018;11(6):857-62. doi.org/10.5958/0974-4150.2018.00150.5
18. Sanapala SR. Vijayalakshmi A. Analytical method development and validation of glipizide to determine residual solvents by head space-gas chromatography. Research Journal of Pharmacy and Technology. 2021; 14(5):2440-4. doi.org/10.52711/0974-360X.2021.00429
19. European Pharmacopoeia 8th Edition (2.4.24), Identification and control of residual solvents, Strasbourg, France, 2014.
20. United States Pharmacopeia XXXVII <467>, Organic Volatile Impurities. 2013.
21. Zhou J. Lu X. Tian B. Wang C. Shi H. Luo C. Li X. A gas chromatography-flame ionization detection method for direct and rapid determination of small molecule volatile organic compounds in aqueous phase. 3 Biotech. 2020;10(12):520. doi.org/10.1007/s13205-020-02523-8.
22. Sobrado LA. Freije-Carrelo L. Moldovan M. Encinar JR. Alonso JI. Comparison of gas chromatography-combustion-mass spectrometry and gas chromatography-flame ionization detector for the determination of fatty acid methyl esters in biodiesel without specific standards. Journal of Chromatography A. 2016;1457:134-43. doi.org/10.1016/j.chroma.2016.06.033.
23. Pereira E. Napp A. Braun JV. Fontoura LAM. Seferin M. Ayres J. Ligabue R. Passaglia LMP. Vainstein MH. Development and validation of analytical methodology by GC-FID using hexadecyl propanoate as an internal standard to determine the bovine tallow methyl esters content. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2018;1093-1094:134-40. doi.org/10.1016/j.jchromb.2018.06.030.
24. Kännaste A. Copolovici L. Niinemets Ü. Gas chromatography-mass spectrometry method for determination of biogenic volatile organic compounds emitted by plants. Methods in Molecular Biology. 2014;1153:161-9. doi.org/10.1007/978-1-4939-0606-2_11.
25. Vallarino JG. Erban A. Fehrle I. Fernie AR. Kopka J. Osorio S. Acquisition of volatile compounds by gas chromatography-mass spectrometry (GC-MS). Methods in Molecular Biology. 2018;1778:225-39. doi.org/10.1007/978-1-4939-7819-9_16.
26. Piechocka J. Wieczorek M. Głowacki R. Gas Chromatography-Mass spectrometry based approach for the determination of methionine-related sulfur-containing compounds in human saliva. International Journal of Molecular Sciences. 2020;21(23):9252. doi.org/10.3390/ijms21239252.
27. International Conference on Harmonization, ICH Guidelines, Validation of analytical procedures technical requirements for registration of pharmaceuticals for human use: Text and Methodology Q 2 (R1), International Conference on Harmonization, Geneva, Switzerland, 2005.
28. Saudagar RB. Thete PG. Bioanalytical method validation: A concise review. Asian Journal of Research in Pharmaceutical Sciences. 2018; 8(2):107-14. doi.org/10.5958/2231-5659.2018. 00019.X
29. Raghava RN. Gowda KPK. Syed MA. Badami S. ICH guidelines with special emphasis on good clinical practice guidelines (GCP). Research Journal of Pharmacology and Pharmacodynamics. 2010;2(1):27-32.